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1. INTRODUCTION

One of the simplest ways to model the activity in a 
neural spike train is to use a Poisson process. However, the 
conventional homogeneous Poisson process (HPP) is not 
compatible with the results collected from past studies. For 
example, the pulse-number distribution (PND) extracted 
from an HPP will follow a Poisson distribution with a mean- 
to-variance ratio of one. On the other hand, several studies 
have indicated that the ratio is not unity but is 
approximately equal to 2 across the dynamic range (e.g.
Teich and Khanna, 1985). Additionally many features in 
the behaviour of real sensory neurons such as rate 
adaptation, rate-intensity dependence and a dead time in 
spike activity require that modifications be made to this 
model.

Based on these concerns, the HPP was modified and 
extended to give a more realistic stochastic model that 
expressed quantitatively the properties of auditory neurons.
The predictions of the model with respect to the mean-to- 
variance ratio will be taken as an indication of whether the 
new model outperforms the conventional HPP-based model.

2. METHOD

In an HPP, the inter-event intervals 1 1,2,_ which 
specify (in our case) the interval been spikes are governed 
by independent exponential random variables with a 
probability density function f  (tn = x) = XT e - X T x (Leon- 
Garcia, 1994). X is a constant representing the spike count 
within a fixed time window T. The exponential distribution 
was used as a basis from which the new model was 
developed.

Figure 1. The idealised firing rate behaviour with respect to 
stimulus duration and sound intensity level for a peripheral neuron.

2.2 Dead Time Modifications

A fixed value t  was used to denote the dead time 
during which the neuron cannot be activated further. In our 
model, the inter-spike interval was set equal to the sum of 
the time value generated by the firing probability function 
and the dead time t . This process is known as a dead-time- 
modified Poisson Process (DTMPP).

2.1 Firing Rate Modifications

We discarded the fixed spike rate X and used in its 
place a rate function X(L, t), where L is sound intensity 
level and t is stimulus duration. This function was 
constructed based on the measurements of rate adaptation 
(Litvak, et al., 2003) and intensity dependence (Yates, et a l, 
2000; Smith, 1988). Please see Figure 1. With a non­
constant firing rate, the process we have described is known 
as a non-homogeneous Poisson process (NHPP).

Figure 2. A screen shot of the program in MATLAB.

We implemented our stochastic model within MATLAB.
To study the effects of the different components on the 
mean-variance ratio, a simple command program was 
written in MATLAB to control the different parameter 
values (Figure 2). A flowchart illustrating the difference 
between the various simulations is shown in Figure 3. Each
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trial spans over 50 ms and inter-spike intervals were 
generated with the appropriate firing probability equation. 
The same trial was repeated 1000 times to collect sufficient 
data for parameter estimation and PND generation.

around 2 in agreement with results from Teich and Khanna 
(1985) .

Figure 3. A diagram illustrating the process of model construction 
and the subsequent simulations and statistical analysis.

3. RESULTS

The results are presented in the form of plots of mean- 
to-variance ratio against different parameters.

3.1 Dead Time Effects under Constant Firing Rate

We considered the effect of dead time with firing rate 
as a parameter (Figure 4). Under a fixed firing rate, the 
mean-variance ratio was found to be a monotonic increasing 
function of dead time. Furthermore, the mean-to-variance 
ratio grows with increasing values of firing rate. This 
dependence becomes stronger as the dead time is increased.
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Figure 4. M-to-V ratio versus mean firing rate and dead time.

3.2 Dead Time with Time-varying Firing Rate

The full rate function was used here. Figure 5 shows 
that the mean-to-variance ratio behaves in a similar manner 
as an HPP model with dead time. The ratio remains around 
one without dead time, and is driven above one when a dead 
time is present. However, the growth is not as rapid as 
when plotted against the average firing rate. In fact, under a 
moderate dead time (0.5 ms), the ratio demonstrates little 
dependence on sound intensity level and appears to be
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Figure 5. Mean-to-variance 
ratio versus sound intensity 
level with various values of 
dead time.
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4. DISCUSSION

Clearly dead time is the dominant factor that drives the 
mean-to-variance ratio above unity. In fact, in a DTMPP 
the mean-variance ratio can be shown to equal 
approximately (1 -  k t) - 2 (Cantor and Teich, 1975). With a 
non-zero dead time, the M-V ratio is positively correlated 
with spike rate. However using a time-varying rate 
function, the ratio does not grow significantly when plotted 
against sound intensity. This is most certainly due to the 
fact that since the growth rate in mean activity is diminished 
with adaptation, the effects of sound level on the M-V ratio 
are minimized.

Using a moderate dead time value, we have found that the 
values obtained for the mean-to-variance ratio are 
compatible with existing experimental results. However, 
further investigation will be required to thoroughly evaluate 
this model with other intensity-coding properties of auditory 
neurons.
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