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ABSTRACT

This article presents a technique for modeling sound propagation from an airgun array, using the 
parabolic equation (PE) method, that takes into full account the far-field, angle-dependent radiation 
pattern of the array. This is achieved by generating a PE starting field for the array by summing 
together shaded, phase-shifted replicas of the PE self-starter. The array starter has been implemented 
using the RAM parabolic equation model. A validation comparison is presented of field predictions 
generated using the array starter against exact normal mode solutions for an array source computed 
using the ORCA model. Examples of synthetic waveform airgun array calculations performed using 
the array starter are also provided. The method presented in this article can be used to accurately 
predict pressure waveforms from an airgun array in the ocean environment provided that the modeler 
knows (or can compute) far-field source signatures for individual airguns in the array.

s o m m a i r e

Cet article présente une technique permettant de modéliser la propagation du son provenant dun réseau 
de canons à air, en utilisant la méthode de léquation parabolique (EP), qui prend en compte le patron de 
directivité du réseau en champ lointain. Cette approche est réalisée en créant un champ initial pour la 
globalité du réseau défini comme la somme des réplicats de départ (pondérés et déphasés) de chacune 
des sources du réseau. Ce champ initial de réseau a été mis en uvre en utilisant le modèle déquation 
parabolique RAM. Les prédictions du champ acoustique générées en utilisant cette technique sont 
comparées aux solutions exactes des modes normaux pour un réseau de sources calculées avec le 
modèle ORCA. Des exemples de calculs de forme dondes synthétiques obtenues avec le champ initial 
de réseau sont également présentés. La méthode décrite dans cet article peut être utilisée pour prédire 
avec précision les formes donde de pression dun réseau de canons à air dans lenvironnement marin, 
à condition que le modélisateur connaisse (ou puisse calculer) les signatures en champ lointain de 
chacun des canons à air du réseau.

1 INTRODUCTION

Modern ocean acoustic modeling codes are capable of ac­
curately predicting sound propagation in real ocean environ­
ments; however, special treatment is required for modeling 
directional sources, like airgun arrays, since most available 
codes solve the wave equation for isotropic (non-directional) 
sources on a finite range/depth grid. When modeling sound 
propagation from a strongly directional source, like an air- 
gun array, the modeler must take care to properly couple the 
directionality function of the source to the pressure field com­
puted by the propagation model. Previous efforts at modeling 
an airgun array using the parabolic equation (PE) method, 
by DeRuiter et al. [1], assumed an isotropic source and fo­
cused on reproducing the time arrival structure of received 
pulses while ignoring directionality. Accurate modeling of 
both the amplitude and frequency structure of airgun array 
sound emissions requires, however, a rigorous treatment of

the frequency-dependent directionality function of the source.
Coupling a directional source to a raytrace code is 

straightforward: each ray is weighted by the far-field direc­
tionality function of the source according to the ray launch 
angle. Coupling a directional source to a purely harmonic 
propagation modeling code—i.e., using wavenumber integra­
tion, normal modes or parabolic equation method—is not so 
straightforward. In this case, one can generally simulate a di­
rectional source by summing together the fields from an array 
of discrete isotropic sources located near the origin [2]. The 
amplitudes and phases of the array elements must be chosen 
to replicate the far-field directionality pattern of the source 
under investigation. Even so, airgun arrays (and horizontal 
arrays in general) present a computational problem because 
the array elements are not all located at the zero-range of the 
modeling grid. As shown in the next section, this problem can 
be overcome in normal mode theory by invoking the far-field 
approximation for an array source. This, in turn, motivates
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our solution for an array starter for the PE method.

2 THEORY

Consider a N -element planar array situated at depth z s with 
its geometric centre at x  = y  =  0. In the plane z =  zs, the 
array elements are located at the coordinates

A r  m = (xm , ym ̂  m  = 1, 2 . .. N .

Each element of this array has complex amplitude/phase A m 
at some frequency f . We seek an expression for the far-field 
acoustic pressure from such an array in an arbitrarily strati­
fied, range-independent environment where the acoustic pres­
sure can be computed from the normal mode solution to the 
Helmholtz equation:

p(r, z ; zs —  (z s)^ n ( z ) kn 1/2etknr, (1)
n = 1

where ÿ n (z ) are the normal modes, kn is the horizontal 
wavenumber of mode n, z s is the source depth, and r  and 
z are the usual cylindrical coordinates.

In the horizontally-stratified, range-independent case, the 
solution to the wave equation is symmetrical with respect to 
the azimuth angle, 6. Due to the intrinsic directionality of the 
array, however, the acoustic field is not generally symmetrical 
with respect to 6 . The total field from this array at location 
(r, z) = (r, 6, z ) is given by

N

P s ( r , z )  = ^ 2  A mp( \r  — A r m \,z). (2)

Let us define the far-field of the array as the region where 
\r| >  \A r\. Beyond this range, the separation of the array 
elements perpendicular to the direction of propagation (i.e., 
out of the r / z  plane) becomes unimportant and we need only 
consider the position of each array element projected onto the 
r / z  plane:

r
A rm =  A r m • r “T =  x m cos 6 + ym sin 6. (3) 

\r\

In the far-field of the array, the spreading loss terms for the 
different array elements are approximately the same (i.e., 
yjr — A r m ^  -y/r). From Equation 1 we obtain the follow­
ing expression for the total field of the array in terms of the 
normal modes:

Ps(( r , z  ) =  y  ----  J 2 ÿ *n (zs ) ÿ n (z)kn 1/2el

N

J 2 A "
m=1

(4)

The physical interpretation of Equation 4 is straightforward: 
in the far-field of the array, the normal modes are weighted by 
the vertical array directionality (the bracketed term) accord­
ing to the grazing angle ÿ n = cos- 1 (kn c/w).

Equation 4 could be used for computing the field from a 
horizontal array using normal modes; in particular, it would 
be useful for computing the initial field for an array using 
one-way coupled or adiabatic modes. Equation 4 could also 
be used for constructing a PE starting field from the nor­
mal modes (i.e., for generating a modal starter). In a range- 
independent environment, however, there is no computational 
advantage to Equation 4 since Equation 2 gives the exact an­
swer and is just as easy to compute given the mode func­
tions, ÿ n (this fact is exploited to validate the array starter 
approach in Section 3). Instead, for the general case of range- 
dependent problems, we seek to rewrite Equation 4 in terms 
of the parabolic equation solution to the Helmholtz equation 
and solve the inhomogeneous initial value problem for an ar­
ray source at z =  zs . We do so in terms of Collins’ PE self­
starter.

Following Collins [3]l, recall that the normal modes in 
Equation 1 satisfy the eigenvalue equation, which we write 
using operator notation as follows:

k 2 (1 +  X  ) ÿ n kn (5)

where k 0 is some reference wavenumber, p is the density of 
the medium, and the depth operator X  is defined to be

X  = k -2 I o— 1  d  +  k2 — k2 
X =  ko { 0 3 z p d z  + k  ko

(6)

This is the same eigenvalue equation that we obtain from the 
separation of variables solution of the Helmholtz equation, 
but this particular form is useful for deriving PE approxi­
mations. Equation 4 can be rewritten in terms of the depth- 
operator, X , as follows:

N

Ps(r,  z) = J ^ £ A . e
—ikoArm V1+X

m=1

x  k0 1/2(1 +  X )- L6(z — zo) , (7)

where the completeness relation for the normal modes has 
been used to obtain the delta function ÿ n (z0) ÿ n (z) = 
S(z — zo).

The term in brackets in Equation 7 is actually the PE 
self-starter field for a point-source, p s (r, z ) [3, Eq. 7], with a 
cylindrical spreading term ( r—1/2) factored out. If we denote 
the range-factored (i.e., multiplied by r 1/2) self-starter as

PS(r , z  ) = V rP s (r ,z  )

=  ( 1 +  X  ) — 1/4eik°rVT^
k o

x 5 ( z  — zo), (8)

then we obtain the following result for the PE starting field at 
range rs from an array:

1 N

P S (rs , z) = A mPS(rs — A r m , z ) . (9)
/ T s ^m= 1

e

X e
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That is, the array starting field in Equation 9 is obtained by 
summing together the N  point-source, range-factored starting 
fields together at range r s, each displaced by distance A rm 
from the origin. The resulting starting field may then be prop­
agated forward from range rs in the usual fashion.

Although Equation 9 was derived for the far-field case, 
there is no requirement that the starter range, rs, be in the far- 
field of the array. This is because the starting field, p s ( r s ; z), 
exhibits the same far-field radiation pattern as the source ar­
ray in the Fraunhofer zone. Thus, even if the starting field is 
computed in the near-field, the array starter solution will con­
verge to the correct far-field solution as the PE is marched out 
in range.

In order to avoid having to perform back-propagation, 
the range of the starting field, r s, must be greater than the 
maximum value of A rm. The starting range must also be 
sufficiently large so that the numerical computation of the 
self-starter is stable for the smallest value of r -  A r m. In 
the authors’ experience, a suitable value for rs may be ob­
tained by adding at least half the horizontal computation grid 
spacing to the maximum value of A rm. Also, if the array 
spacing is larger than the computation grid spacing (e.g., at 
high frequencies), then it is acceptable to take multiple PE 
range steps to arrive at rs. Finally, note that rs may be differ­
ent for different frequencies and azimuth angles.

Even though it was derived for the range-independent 
case, the array starter can be applied equally well to a range- 
dependent environment. This is because the normal modes 
that contribute to the starting field are excited according to 
the vertical wavenumber spectrum of the source array (i.e., 
the vertical directionality), as can be seen by inspection of 
Equation 4. As a consequence, the array starter can be used 
to compute the field from an array in a range-dependent envi­
ronment as long as the environment is at least approximately 
range-independent near the source (i.e., within range rs of the 
source).

3 VALIDATION

Provided the modeler has access to an existing PE self-starter 
code—such as the one in RAM—numerical implementation 
of the array starter (Equation 9) is straightforward. The array 
starter code need only invoke the self-starter as a subroutine 
to generate multiple vertical starting fields (i.e., p(rs m, z)) at 
N ranges

rsm = rs -  A r m, m  = 1 . . . N .

The resulting collection of starting fields must then be 
range-factored and summed together with the appropriate 
frequency-domain complex amplitudes A m ( f  ) to yield the 
array starting field. The array starter has been implemented 
here using the RAM split-step Padé PE code [4], version 1.5g.

In order to validate the present implementation of the ar­
ray starter, a range-independent benchmark test scenario was 
created using the ORCA normal-mode code [5], version 2.0. 
In a range-independent environment, Equation 2 is an exact 
expression for the pressure field from an array source, which
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Figure 1: Diagram showing acoustic properties of the 
range-independent test case used for validating the array 
starter. Acoustic parameters are sound speed, c, density, 
p, and attenuation, a.  The source depth for the test case 
was 5 m and the receiver depth was 50 m.

is valid even in the near-field (the array starter is only valid 
in the far-field). Thus benchmark reference solutions were 
generated for the array starter by using Equation 2 with the 
normal modes computed by ORCA.

The benchmark test case consisted of a planar array source 
in a shallow, range-independent ocean waveguide. The water 
depth in the waveguide was taken to be 100 m and the bottom 
consisted of a single 50 meter sediment layer over a semi­
infinite basement. A diagram showing the acoustic properties 
of the test environment is presented in Figure 1. For simplic­
ity, sound speed gradients were not used in each layer in order 
to avoid difficulties associated with the different sound speed 
interpolation methods used by RAM and ORCA (i.e., c-linear 
versus 1 / c 2 -linear interpolation).

The source, shown in Figure 2, was taken to be a 16 ele­
ment planar array consisting of two identical sub-arrays sepa­
rated by 10 metres. The sub-array elements were separated by 
3 m and the tow depth of the array was taken to be 5 m. This 
particular layout, with equally spaced elements divided into 
linear sub-arrays, was chosen because it is similar to com­
monly used airgun array configurations. The array elements 
all had identical amplitude and phase so that the main lobe 
of the array was in the vertical (^ =  ±90°) direction. Ad­
ditionally, the source level of each element was taken to be 
SL = -1 0  log N  dB @ 1 m (N  =  16) so that the vertical 
far-field source level of the array was 0 dB @ 1m  (unity am­
plitude). The propagation direction was taken to be 0 = 45°, 
as indicated by the arrow in Figure 2; this direction was pur­
posely chosen to be at an angle with respect to the array axis 
so as to increase the complexity of the vertical directionality 
function and thus provide a more rigorous test case.

Figure 3 shows benchmark transmission loss compar­
isons for a receiver at 50 m depth. The transmission loss 
comparisons were run at two frequencies, 125 Hz and 500 Hz, 
which correspond to quarter-wavelength and single-wavelength 
multiples of the sub-array element spacing. The plots show 
excellent agreement between the transmission loss computed 
using RAM and ORCA, indicating that the array starter is 
valid and that it was implemented correctly.
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Figure 2: Diagram of the 16 element planar array  used for 
the benchmark test scenario (the tow depth of the array 
is 5 m). The diamonds indicate the locations of the a r­
ray elements and the arrow shows the direction of sound 
propagation (i.e., increasing r).

Figure 3 also shows the transmission loss for an isotropic 
point source with SL =  0 dB @ 1m , for comparison. Al­
though the isotropic source has the same source level as the 
16 element test array in the vertical direction (^ =  ±90°) the 
transmission loss for the point source is «  12 dB less than 
for the array source in the horizontal direction. This example 
shows that, when modeling sound propagation from an array 
source, it is important to take directionality into account in 
order to to avoid substantial errors in the received sound level 
estimates.

4 SYNTHETIC WAVEFORM EXAMPLE

This section gives an example of a synthetic waveform cal­
culation in a range-dependent test environment in order to 
demonstrate how the array starter method may be applied to 
a real airgun modeling problem. For this example calcula­
tion, a set of notional airgun signatures has been computed 
using a physical modeling approach. The source model em­
ployed here predicts notional airgun signatures by modeling 
the oscillation and radiation of a collection airgun bubbles 
and was developed by one of the authors as part of a the­
sis project [6]. In addition to the bubble oscillation physics, 
the source model includes non-linear pressure interaction be­
tween bubbles, port throttling and thermodynamic heat trans­
fer across the bubble wall. The output of the airgun model has 
been validated against a large collection of source signature 
data for Bolt 600/B airguns [7]. The model physics are based 
on the work of investigators such as Ziolkowski [8,9], Laws 
et al. [10], and Landr0 [11]. Note that, although modeled sig­
natures have been used here, notional signatures for the array 
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starter method could also be obtained from near-field acous­
tic measurements of an airgun array. When using measured 
signatures, however, it is important to remove pressure in­
teraction effects from near-field measurements to obtain the 
notional far-field signatures [12].

A typical 16-gun, two-string, 1500 in3 (24.6 liter) air- 
gun array was chosen for the example synthetic waveform 
calculation, as shown in Figure 4. The nominal tow depth 
of the example airgun array was taken to be 6 m and the fir­
ing pressure was taken to be 2000 psi (13.6 MPa). Figure 5 
shows the notional source signatures for this array as com­
puted by the airgun source signature model. Distortion of the 
bubble pulses, particularly noticeable in the signatures of the 
80 in3 guns, is due to non-linear pressure interaction effects 
between airguns in the array [12]. Note that Figure 5 only 
presents source signatures for half of the guns in the array 
(i.e., a single string); the source signatures for the other eight 
guns are identical due to the symmetry of the array. The sam­
pling interval of the synthetic source signature data presented 
in Figure 5 is A t = 100 ^s.

In order to perform waveform modeling using the Fourier 
synthesis method, a discrete frequency grid is employed

fk = k A f ,  k =  1, 2 . . . M ,

where A f  is the frequency spacing of the field calculations 
and f max = M A f  is the maximum field computation fre­
quency. Recall that the frequency spacing also determines 
the length of the synthetic data window according to the re­
lation T  = 1 / A f . For the example calculation presented 
here, A f  =  0.5 Hz and thus the length of the synthetic data 
window is T  = 2 s. The maximum computation frequency 
must be selected based on the power spectrum of the source 
waveforms; for the present example, f max = 1024 Hz, which 
encompasses over 99.9% of the signal energy in the synthetic 
airgun waveforms shown in Figure 5.

In addition to the bandwidth of the field calculation, f max 
also dictates the required frequency resolution for the source 
waveforms according to the relation A f  =  f max/ M . Thus, 
one must generally resample the airgun source signatures in 
the frequency domain so that their Discrete Fourier Trans­
forms (DFT’s) have the same frequency resolution as the field 
calculations. This is most simply accomplished by padding 
or truncating the source signature data in the time domain be­
fore taking the DFT. Once the source signatures have been 
resampled to the correct frequency spacing, the DFT coef­
ficients correspond to the complex phase/amplitude terms, 
A m ( k A f  ), at each model frequency. Equation 9 may then 
be used to compute the starting field, at frequency f  along 
azimuth 6, from the DFT coefficients and the projected air- 
gun coordinates, A r m (6). Consistent spatial sampling is also 
important: at each frequency, the range and depth spacing of 
the PE grid is taken to be an integer multiple of the smallest 
value, to ensure that the computation points are coincident.

Figure 6 shows the range-dependent test environment that 
has been used for the example waveform synthesis calcula­
tion. Acoustic propagation has been modeled along a down­
ward sloping bottom, with water depth varying from 50 m
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Figure 3: Benchmark comparison plots of transmission loss versus range for ORCA (solid line) and RAM seeded with 
the array starter (circles). Benchmark plots are presented for 125 Hz (top) and 500 Hz (bottom). For reference, the plots 
also show transmission loss for an isotropic point source.
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Figure 4: Plan-view diagram of the 16 airgun array used 
for the example calculation (total volume 1500 in3); the 
nominal tow depth of the array was taken to be 6 m. 
The plot annotations indicate the volume of each airgun 
and the arrows show the broadside and endfire directions 
from the array.
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Figure 5: Notional source signatures for 8 of 16 guns in the 
1500 in3 example array, as computed by the source signa­
ture model. Pressure units (vertical axes) are in bar m 
(1 bar=105 Pa) and time units (horizontal axes) are in sec­
onds. The plot annotations indicate the volumes of in­
dividual guns. The source signatures for the remaining 
eight guns are identical to the ones presented here due to 
the symmetry of the array.
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Figure 6: Diagram showing acoustic properties of the 
range-dependent environment used for the example wave­
form calculation. Acoustic param eters are sound speed, c, 
density, p, and attenuation, a. Note that the sound speed 
profile in the water column is downward refracting.

at the source to 600 m at 10 km range (3.15° slope). The 
sound speed profile in the water column is downward refract­
ing, varying from 1.54 km/s at the sea-surface to 1.49 km/s 
at 600 m depth. The sub-bottom, which runs parallel to the 
bathymetry, consists of a 50 meter sediment layer over a semi­
infinite basement. The sound speed in the sediment layer is 
upward refracting with a vertical gradient of 1/m (c =  1.70­
1.75 km/s) and the sound speed in the basement is homoge­
neous (c = 3  km/s).

Figure 7 shows synthetic airgun pulse waveforms com­
puted using the array starter method at r =10 km for the 
range-dependent test environment of Figure 6. Two cases are 
presented: one with array endfire (6 = 0°) oriented in the 
downslope direction and the other with array broadside (6 =  
90°) oriented in the downslope direction. The plots show 
comparisons of airgun pulses at multiple receiver depths, from 
50 m to 550 m in 100 m increments. Although the wave­
form data in Figure 7 are synthetic, they can be used to com­
pute standard marine mammal noise exposure metrics, such 
as peak and rms sound pressure level, and sound exposure 
level (SEL), versus depth and range from the array, just as 
with acoustic data measured in situ.

The example waveforms presented in Figure 7 were com­
puted assuming strictly two-dimensional sound propagation 
and also neglecting back-scattered energy from upslope of 
the array. Three-dimensional effects are unimportant for the 
example case presented here because the propagation plane 
is oriented directly downslope and so there is no horizon­
tal coupling from adjacent azimuths [13]. The contribution 
of upslope back-scatter is expected to be negligible for the 
present example case, based on the work of Westwood [14] 
who showed that back-scattered energy was insignificant for 
penetrable wedge environments similar to the one considered 
here. Thus these two approximations are not expected to in­
troduce significant errors into the waveform calcuations.

The synthesized waveforms in Figure 7 contain a consid­
erable amount of structure due to the rich frequency content 
of the sound emissions from the airguns. From the figure, 
one can see that airgun pulses in the lower part of the wa- 
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ter column (z > 200 m) have the greatest amplitudes and 
are much more sharply peaked than airgun pulses in the up­
per part of the water column (z < 200 m). This is because 
high frequencies, which carry the energy from the sharp ini­
tial peaks in the airgun source signatures, are trapped in the 
bottom duct created by the down refracting sound speed pro­
file. In the high frequency raytrace approximation, the sound 
rays “skip” down the seabed slope creating a shadow zone 
near the sea-surface. At low frequencies, on the other hand, 
the long wavelength normal modes span the whole water col­
umn, thus leaking low frequency sound energy out of the bot­
tom duct. The low frequencies, however, only carry energy 
from the lower amplitude airgun bubble pulses, rather than 
the peaks.

Inspection of the waveforms in Figure 7 shows that levels 
in the broadside direction of the array are louder, and contain 
more high-frequencies, than levels in the endfire direction. 
This is because, for each of the two subarrays, all sound wave­
lengths add constructively in the broadside direction, whereas 
only those wavelengths that are integer multiples of the gun 
spacing (or are substantially larger than the gun spacing) add 
constructively in the endfire direction. This kind of directiv­
ity, with maximum levels measured at array broadside, is typ­
ical of seismic airgun arrays, which often consist of several 
gun strings towed in parallel behind the survey vessel. This 
example shows that the direction of sound propagation (i.e., 
the azimuth angle, 6) is an important determiner of both the 
intensity and frequency content of the received pulse from an 
airgun array.

5 CONCLUSION

This article has presented an “array starter” technique for 
modeling sound propagation from an airgun array using the 
parabolic equation method. The array starter fully accounts 
for the vertical and horizontal directionality of an array source; 
it is computed by summing together phase-shifted, range- 
factored replicas of the PE self-starter for each array element. 
Field predictions computed using the array starter are valid 
in the far-field of the array, including those regions where the 
acoustic field is dominated by steep propagation angles. A 
numerical implementation of the array starter was validated 
against exact (range-independent) field solutions for an array 
source computed using the ORCA normal mode model. An 
example was also presented of how the array starter may be 
combined with the Fourier synthesis technique to generate 
synthetic airgun waveform data in a range-dependent envi­
ronment. Synthetic airgun pulses, computed using the array 
starter technique, can be used for predicting common noise 
exposure metrics for marine mammals, including peak and 
rms sound pressure level, and sound exposure level. Although 
the array starter was devised with airgun arrays in mind, this 
technique can be used for modeling sound propagation for 
any kind of horizontal or volumetric array source using the 
parabolic equation method.
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Figure 7: Synthetic airgun pulses at 10 km range, as computed in the range-dependent test environment of Figure 6, 
(left) for array endfire oriented downslope and (right) for array broadside oriented downslope. The receiver depth of 
each waveform is shown in the plot annotation. All waveforms are presented using the same time and pressure scales.
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