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1. i n t r o d u c t i o n

Automatic detection of signals in noise is a 
common problem in many areas of acoustics. In the field of 
passive acoustic monitoring of marine mammals, the signals 
to be detected are vocalizations. The noise originates from  
natural (e.g. wind, waves, rain) and man-made sources (e.g. 
shipping, construction, seismic surveys). Signal 
characteristics vary broadly: frequency ranges from a few  
Hz to 200 kHz, duration from milliseconds to seconds to 
hours. N oise characteristics vary by similar orders of  
magnitude. While specific automatic detectors have been 
designed to successfully find specific calls in specific 
environments, the challenge is to find a large variety o f  calls 
in a large variety o f  noise. An exploitable difference 
between calls and noise is that most noise is a result o f  
stochastic processes (wind, waves, rain, cavitating 
propellers and seismic airguns generate gas bubbles 
underwater o f  varying size and resonance frequency), while 
many animal signals are a result o f  deterministic processes 
(vibrating strings and cavities o f  predetermined and fixed  
size). As a result, Shannon entropy (also called information 
entropy) can be expected to differ between signal and noise. 
Shannon entropy quantifies the information contained in a 
data set. The concept was introduced by Claude E Shannon 
in his 1948 paper “A  mathematical theory of  
communication” (Shannon 1948). The current article 
investigates whether entropy makes a “good” detector for 
animal calls in underwater ambient noise.

2. METHOD

Underwater acoustic recordings from the Arctic 
were used to test and compare automatic signal detectors. 
The species that were present in the recordings and their 
common call types are listed in Table 1.

Three different automatic detectors were tested and 
compared: 1) a broadband peak energy detector, 2) peak 
energy detection in a set o f  bandpass filters, and 3) a peak 
entropy detector. Each detector computed a statistical 

quantity s(t), a mean s  and a standard deviation c. For a 

given threshold y, a signal was deemed present if  s(t) > s  + 

yc. Two different windows were applied to the time series, 
an “averaging” window o f 1 min length, over which the 
mean and standard deviation were computed, and a 
“detection” window o f 100 ms length, over which the 
instantaneous statistic was computed for comparison to the 
mean. The detection window immediately preceded the 
averaging window and both were moved through the time 
series sample by sample.

Given a recorded pressure time series p(t), the broadband 
energy detector computed p2(t). The band-passed energy 
detector split the signal into multiple overlapping pass bands 
pf(t) before computing pf2(t). This was done by Fourier 
transforming the time series over 100 ms long windows, and 
grouping the Fourier coefficients into octave bands covering 
the recorded bandwidth o f  10 kHz. M oving the 100 ms 
window through the time series sample by sample yielded a 
time series o f  Fourier coefficients. Energy was computed in 
each band, and a signal was deemed present if  the energy in 
any one band surpassed the mean by a preset threshold. A  
slightly different implementation o f  the band-passed energy 
detector and more detail about the entropy detector can be 
found in Erbe &  King (2008).

The entropy detector also Fourier transformed the pressure 
time series over 100 ms windows and computed the power 
spectrum |P(f)|. The power spectrum was normalized so that 
the entropy did not depend on the absolute energy: 
^  P( f  ) _ 1 . Shannon entropy was computed as

P (f  ) ' log P( f  )■ The 100 ms window was moved through

the pressure time series sample by sample, yielding a time 
series o f  entropy.

3. RESULTS

Figure 1 shows an example o f  two marine mammal 
calls that were detected by the entropy detector. A  
spectrogram is plotted with entropy (not to scale) overlain as 
a thin black line.

Table 1. Selected arctic species and their call types

Species Call Types

Bowhead whale FM tones, song, pulsive calls

Gray whale FM tones, moans, pulsive calls

Beluga whale Whistles, pulsed calls, clicks

Walrus Knocks, bell sounds, grunts

Bearded seal FM signals

Ringed seal Barks, yelps
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Fig. 1. Spectrogram o f a 5.5 s recording showing a faint 
pinniped call and an FM  call o f  a baleen whale. Entropy is 

shown as a black line unscaled.

4. DISCUSSION

All of the animals in Table 1 made calls with tonal 
components (whistles or frequency modulated (FM) tones). 
Shannon entropy was significantly higher for these than for 
ambient noise and these calls were therefore detected very 
well. The broadband clicks of animals were not detected 
well by the entropy detector.

Ambient noise can have tonal components (e.g. ice noise 
and shipping), but these did not cause a significant number 
of false alarms in the tested data set. The largest number of 
false alarms was due to ringing bubbles. These were 
believed to be biological in origin, but the animal making 
them could not be identified.

For calls of constant frequencies plus harmonics, the band- 
passed energy detector worked well if the condition was set 
that energy had to be detected simultaneously in more than 
two and less than four frequency bands.

To compare the three detectors, receiver-operating- 
characteristics (ROC) were computed. An automatic 
detection task is a binary classification problem with four 
possible outcomes (hit, miss, false alarm, correct rejection). 
With PFA as the probability of false alarm and PCD as the 
probability of correct detection (determined by comparing 
automatic detections to manual detections), ROC curves are 
computed by varying the threshold y. As y is increased, the 
number of false alarms decreases at the cost of the number 
of correct detections, because the number of misses 
increases. An ideal detector would have a probability of 
false alarm of 0 and a probability of correct detection of 1. 
The “best” detector in a comparison of detectors is the one 
approaching (0|1) most closely, in this case the entropy 
detector.

Comparing the instantaneous value of the statistic to the 
median instead of the mean improved performance as 
ambient noise can have large yet brief (transient) outliers 
which affect the mean but not the median.

Choosing the window lengths depends on the ultimate goal. 
If individual calls need to be counted, then the detection 
window should be short and ideally of the length of typical 
calls. If a mere species present/absent outcome is desired, 
window lengths are not critical and can be longer, grabbing 
more than one call at a time. The length and placement of 
the averaging window can be made adaptive. E.g. if a group 
of vocalizing belugas is encountered, the averaging window 
would ideally remain fixed in time before the vocalizations 
start rather than moving into the animal sounds and 
averaging them into ambient noise. Once the vocalizations 
have stopped, the averaging window can be jumped forward 
to the end of the vocalizations and continue to move through 
the data.

Altogether, the entropy detector worked well to find sounds 
of the target species in their arctic acoustic environment. 
The entropy detector should be considered a first step in a 
series of automatic analysis tools. As a second step, all 
detected signals need to be classified to species, which was 
not attempted in the current study.
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Fig. 2. Comparison of the performances o f the three detectors 
using receiver-operating characteristics (ROC). Each data 

point corresponds to a set threshold y.
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