Modal Decomposition of Ocean Acoustic Fields
Using Damped Least-Squares Inversion

S.E. Dosso and N. E. Collison
School of Earth and Ocean Sciences
University of Victoria, Victoria BC V8W 3Y2

Long-range propagation of acoustic pressure fields in the ocean is often well modelled as a discrete set of propagating normal modes

\[p(r, z) = b \sum_{j=1}^{M} \phi_j(z) \phi_j(z_*) e^{ik_j r} \]

where \(p(r, z) \) is the (complex) pressure at range \(r \) and depth \(z \), \(M \) is the number of modes, \(\phi_j \) and \(k_j \) are the mode functions and wavenumbers, respectively, \(z_* \) is the source depth, and \(b \) is a complex constant. In this case, the acoustic field measured at an array of sensors can be decomposed into its modal components providing the basis for matched-mode processing techniques. The modal summation can be written as a linear matrix equation

\[A x = p, \]

where \(A \) is the mode matrix, \(x \) represents the modal excitations, and \(p \) is the pressure measurements. For example, for a vertical array of \(N \) sensors

\[p = [p(z_1), \ldots, p(z_N)]^T, \]

\[A = b \begin{bmatrix} \phi_1(z_1) & \cdots & \phi_M(z_1) \\ \vdots & \ddots & \vdots \\ \phi_1(z_N) & \cdots & \phi_M(z_N) \end{bmatrix}, \]

\[x = \begin{bmatrix} \phi_1(z_1) e^{ik_1r} / \sqrt{k_1r} \\ \cdots \\ \phi_M(z_N) e^{ik_Mr} / \sqrt{k_Mr} \end{bmatrix}^T. \]

The corresponding expressions for a horizontal array are somewhat more complicated and are range dependent.

For an overdetermined system \((N > M)\), the least-squares solution is obtained by minimizing the squared error

\[\psi_{ls} = [Ax - p]^T[Ax - p] \]

to yield

\[x_{ls} = [A^T A]^{-1} A^T p, \]

where \(^T\) indicates conjugate transpose. For a vertical array which densely samples the water column, the mode matrix \(A \) is approximately orthogonal, and the inversion is straightforward. However, for vertical arrays which poorly sample the water column or for horizontal arrays, \(A \) is non-orthogonal, and \(A^T A \) can be ill-conditioned, leading to instability and poor results for noisy data. This difficulty is sometimes addressed by carrying out a pseudo-inverse of \(A^T A \) using singular value decomposition and deleting the smallest singular values in an ad hoc manner.

The method of damped least-squares (DLS) provides a regularized inversion with a rigorous approach to controlling the level of misfit. In its most general form, the method is based on minimizing a functional

\[\psi_{dls} = [G(Ax - p)]^T [G(Ax - p)] + \theta (Hx)^T (Hx). \]

The first term represents the data misfit, the second is a regularizing term, and \(\theta \) is an arbitrary parameter which controls the trade-off between the two terms. \(G \) and \(H \) represent weighting matrices for the data residuals and modal excitations, respectively. Typically, for data with uncorrelated noise, \(G \) is taken to be

\[G = \text{diag}(1/\sigma_1, \ldots, 1/\sigma_N), \]

where \(\sigma_j \) is the standard deviation of the \(j \)th datum. \(H \) can be chosen arbitrarily to minimize different combinations of the excitations (or differences between excitations), providing flexibility in determining the character of the solution. The DLS solution is given by

\[x_{dls} = (G A^T G A + \theta H^T H)^{-1} A^T G^T p. \]

The trade-off parameter \(\theta \) is chosen so that the (noisy) data are fit to a statistically meaningful level, e.g., to achieve a \(\chi^2 \) misfit of

\[\chi^2 = [G(Ax_{dls} - p)]^T [G(Ax_{dls} - p)] = 2N \]

for \(N \) complex equations. Since \(\chi^2 \) is a monotonically increasing function of \(\theta \), an appropriate value of \(\theta \) can be determined efficiently using Newton's method. DLS can also be modified to determine the smallest-deviatoric solution, i.e., the solution \(x_{sd} \) which deviates minimally from an arbitrary reference vector \(x_0 \). Defining \(x = x_0 + \delta x \), the modal equations can written

\[A \delta x = p - A x_0 = p_0. \]

Applying the DLS formalism leads to

\[x_{sd} = x_0 + [(G A)^T G A + \theta H^T H]^{-1} A^T G^T G p_0. \]

The characteristics and potential advantages of DLS inversion for modal decomposition will be illustrated and discussed in this paper.