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Long-range propagation of acoustic pressure fields in 
the ocean is often well modelled as a discrete set of prop
agating normal modes
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where p(r, z) is the (complex) pressure a t range r  and 
depth z, M  is the num ber of modes, (j)j and kj  are the 
mode functions and wavenumbers, respectively, z s is the 
source depth, and b is a complex constant. In this case, 
the acoustic field measured a t  an array of sensors can be 
decomposed into its m odal components providing the ba
sis for matched-mode processing techniques. The m odal 
sum m ation can be w ritten as a linear m atrix  equation

A x  =  p ,

where A  is the mode m atrix , x  represents the m odal 
excitations, and p  is the pressure measurements. For 
example, for a vertical array of N  sensors

P =  [p {z i ) , - - - , p ( z n )]T ,

A =  b
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The corresponding expressions for a horizontal array are 
somewhat more complicated and are range dependent.

For an overdetermined system (N  >  M ), the least- 
squares solution is obtained by minimizing the squared 
error

-01s =  [ A x - p ] ' [ A x - p ]

to yield

Xls =  [A^A] ^ t p ,

where t  indicates conjugate transpose. For a  vertical a r 
ray which densely samples the water column, the  mode 
m atrix  A  is approxim ately orthogonal, and the inversion 
is straightforward. However, for vertical arrays which 
poorly sample the water column or for horizontal arrays, 

A  is non-orthogonal, and A ^A  can be ill-conditioned, 
leading to instablility and poor results for noisy data. 
This difficulty is sometimes addressed by carrying out a

pseudo-inversion of A t  A  using singular value decompo
sition and deleting the smallest singular values in an ad 
hoc manner.

The m ethod of dam ped least-squares (DLS) provides 
a regularized inversion with a rigorous approach to con
trolling the level of misfit. In its most general form, the 
m ethod is based on minimizing a functional

V’dis =  [ G ( A x - p ) ] t [ G  ( A x - p ) ]  +  0 ( H x ) t ( H x ) .

The first term  represents the d a ta  misfit, the second is a 
regularizing term , and 9 is an arb itrary  param eter which 
controls the trade-off between the two terms. G  and H  
represent weighting matrices for the d a ta  residuals and 
modal excitations, respectively. Typically, for d a ta  with 
uncorrelated noise, G  is taken to be

G  =  d ia g { l/o " i, . . . ,  1 /<rjv},

where crj is the s tandard  deviation of the j t h  datum . H  
can be chosen arbitrarily  to  minimize different combina
tions of the excitations (or differences between excita
tions), providing flexibility in determining the character 
of the solution. The DLS solution is given by

^dls =  [ ( G A ^ G A  +  é m t H ^ A t G t G p .

The trade-off param eter 9 is chosen so th a t the (noisy) 
d a ta  are fit to  a statistically meaningful level, e.g., to 
achieve a %2 misfit of

X =  [G (A  x d)s -  p ) ] t  [G (A  x dis -  p)] =  2N

for N  complex equations. Since x 2 is a monotonically 
increasing function of 6, an appropriate  value of 9 can 
be determined efficiently using New ton’s m ethod. DLS 
can also be modified to  determine the smallest-deviatoric 
solution, i.e., the solution x sd which deviates minimally 
from an a rb itra ry  reference vector x 0 - Defining x  =  
x 0 +  5x, the  m odal equations can w ritten

A  <5x =  p  — A  x 0 =  Po- 

Applying the DLS formalism leads to

x sd =  x 0 +  [(G A ) ^ G  A  +  0 H^H]-1 A ^ C ^ G  Po-

The characteristics and potentia l advantages of DLS in
version for m odal decomposition will be illustrated and 
discussed in this paper.
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