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Long-range propagation of acoustic pressure fields in 
the ocean is often well modelled as a discrete set of prop­
agating normal modes
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where p(r, z) is the (complex) pressure a t range r  and 
depth z, M  is the num ber of modes, (j)j and kj  are the 
mode functions and wavenumbers, respectively, z s is the 
source depth, and b is a complex constant. In this case, 
the acoustic field measured a t  an array of sensors can be 
decomposed into its m odal components providing the ba­
sis for matched-mode processing techniques. The m odal 
sum m ation can be w ritten as a linear m atrix  equation

A x  =  p ,

where A  is the mode m atrix , x  represents the m odal 
excitations, and p  is the pressure measurements. For 
example, for a vertical array of N  sensors

P =  [p {z i ) , - - - , p ( z n )]T ,

A =  b

i )

<t>i ( z n ) ■ • •

e>k iT

V k i r '
■ - A m {zs)

J^MT

The corresponding expressions for a horizontal array are 
somewhat more complicated and are range dependent.

For an overdetermined system (N  >  M ), the least- 
squares solution is obtained by minimizing the squared 
error

-01s =  [ A x - p ] ' [ A x - p ]

to yield

Xls =  [A^A] ^ t p ,

where t  indicates conjugate transpose. For a  vertical a r ­
ray which densely samples the water column, the  mode 
m atrix  A  is approxim ately orthogonal, and the inversion 
is straightforward. However, for vertical arrays which 
poorly sample the water column or for horizontal arrays, 

A  is non-orthogonal, and A ^A  can be ill-conditioned, 
leading to instablility and poor results for noisy data. 
This difficulty is sometimes addressed by carrying out a

pseudo-inversion of A t  A  using singular value decompo­
sition and deleting the smallest singular values in an ad 
hoc manner.

The m ethod of dam ped least-squares (DLS) provides 
a regularized inversion with a rigorous approach to con­
trolling the level of misfit. In its most general form, the 
m ethod is based on minimizing a functional

V’dis =  [ G ( A x - p ) ] t [ G  ( A x - p ) ]  +  0 ( H x ) t ( H x ) .

The first term  represents the d a ta  misfit, the second is a 
regularizing term , and 9 is an arb itrary  param eter which 
controls the trade-off between the two terms. G  and H  
represent weighting matrices for the d a ta  residuals and 
modal excitations, respectively. Typically, for d a ta  with 
uncorrelated noise, G  is taken to be

G  =  d ia g { l/o " i, . . . ,  1 /<rjv},

where crj is the s tandard  deviation of the j t h  datum . H  
can be chosen arbitrarily  to  minimize different combina­
tions of the excitations (or differences between excita­
tions), providing flexibility in determining the character 
of the solution. The DLS solution is given by

^dls =  [ ( G A ^ G A  +  é m t H ^ A t G t G p .

The trade-off param eter 9 is chosen so th a t the (noisy) 
d a ta  are fit to  a statistically meaningful level, e.g., to 
achieve a %2 misfit of

X =  [G (A  x d)s -  p ) ] t  [G (A  x dis -  p)] =  2N

for N  complex equations. Since x 2 is a monotonically 
increasing function of 6, an appropriate  value of 9 can 
be determined efficiently using New ton’s m ethod. DLS 
can also be modified to  determine the smallest-deviatoric 
solution, i.e., the solution x sd which deviates minimally 
from an a rb itra ry  reference vector x 0 - Defining x  =  
x 0 +  5x, the  m odal equations can w ritten

A  <5x =  p  — A  x 0 =  Po- 

Applying the DLS formalism leads to

x sd =  x 0 +  [(G A ) ^ G  A  +  0 H^H]-1 A ^ C ^ G  Po-

The characteristics and potentia l advantages of DLS in­
version for m odal decomposition will be illustrated and 
discussed in this paper.
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