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Long-range propagation of acoustic pressure fields in
the ocean is often well modelled as a discrete set of prop-
agating normal modes
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where p(r, z) is the (complex) pressure at range r and
depth z, M is the number of modes, (j)j and kj are the
mode functions and wavenumbers, respectively, zs is the
source depth, and bis a complex constant. In this case,
the acoustic field measured at an array of sensors can be
decomposed into its modal components providing the ba-
sis for matched-mode processing techniques. The modal
summation can be written as a linear matrix equation

AX =p,
where A is the mode matrix, x represents the modal

excitations, and p is the pressure measurements. For
example, for a vertical array of N sensors
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The corresponding expressions for a horizontal array are
somewhat more complicated and are range dependent.
For an overdetermined system (N > M), the least-
squares solution is obtained by minimizing the squared
error
-01s =

[Ax-p]l'[Ax-p]

to yield
Xis = [AMA] ~tp,

where t indicates conjugate transpose. For a vertical ar-
ray which densely samples the water column, the mode
matrix A is approximately orthogonal, and the inversion
is straightforward. However, for vertical arrays which
poorly sample the water column or for horizontal arrays,
A is non-orthogonal, and A~A can be ill-conditioned,
leading to instablility and poor results for noisy data.
This difficulty is sometimes addressed by carrying out a
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pseudo-inversion of At A using singular value decompo-
sition and deleting the smallest singular values in an ad
hoc manner.

The method of damped least-squares (DLS) provides
a regularized inversion with a rigorous approach to con-
trolling the level of misfit. In its most general form, the
method is based on minimizing a functional

Vdis = [G (Ax-p)Jt[G (Ax-p)] + O(HX)t(HX).

The first term represents the data misfit, the second is a
regularizing term, and 9 is an arbitrary parameter which
controls the trade-off between the two terms. G and H
represent weighting matrices for the data residuals and
modal excitations, respectively. Typically, for data with
uncorrelated noise, G is taken to be

G = diag{l/0"i,..., l/<rjv},

where crj is the standard deviation of the jth datum. H
can be chosen arbitrarily to minimize different combina-
tions of the excitations (or differences between excita-
tions), providing flexibility in determining the character
of the solution. The DLS solution is given by

MIS=[(GAAGA + émtHANALGtG p.

The trade-off parameter 9 is chosen so that the (noisy)
data are fit to a statistically meaningful level, e.g., to
achieve a %2 misfit of
X = [G (A xds- p)]t [G(A xdis- p)] = 2N

for N complex equations. Since x2 is a monotonically
increasing function of 6, an appropriate value of 9 can
be determined efficiently using Newton’s method. DLS
can also be modified to determine the smallest-deviatoric
solution, i.e., the solution xsd which deviates minimally
from an arbitrary reference vector x0- Defining x
x0 + 5%, the modal equations can written

A &X=p —Ax0 = Po-

Applying the DLS formalism leads to

xsd = x0 + [(G A)AG A + 0 HMH]-1A~CAG Po-

The characteristics and potential advantages of DLS in-
version for modal decomposition will be illustrated and
discussed in this paper.



