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1. I n t r o d u c t i o n .  A particular area of interest is the 

vibrational behaviour of blade-type structures in which 

tapered beam s have been, widely, studied. In finite el­

em ent form ulations[l], polynom ial shape functions are 

often used. A deviation from this practice will pay div­

idends if improved accuracies can be obtained by using 

other shape functions . This is the case of the Dynamic 

Stiffness M atrix  (DSM) appoach, in which, the  frequency 

dependent shape functions are used. In this paper an 

appoach leading to  th e  DSM of Bernoulli-Euler linearly 

tapered  beam s is presented.

2 .M e th o d .  T he differential equation for the lateral 
free vibrations of a Bernoulli-Euler tapered beam  is:

(Hfy(x)wiXX)'XX + = 0.(1)

where, H j y (x)  =  E I y (x), m (x )  =  pA(x);  w  and Iy 
represent displacem ent and the second m om ent of area. 

Considering harm onic  vibrations, eq .(l)  becomes;

H f y (u i , x x x x -a i w ) - (  HjyDEv  mjDEV^ w2w =  0.
( H f y - H J y  O ) )  (m - m ( x ) )

(2)

w h ere ; oc — tïiuj / H j y ^ U j y  — ^  ■—

The non-dim ensionalized weak form for the element 
k, associated to eq.(2) can be w ritten  as: 
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( i d e v w  S w  ) d r i k +(M l k )  / ( m D E vvj{>w)dT)k

w h ere ; ^^ = E I ^ / E I T ; =  lk /L  ; =  % “ 2L* / E I T-, 

r ^ D E V  =  m - D E V / m r  ; ( r  =  r e f e r e n c e  va lue) .

Eq.(3) is w ritten  in the equivalent form:

Then, 6w and w  are approxim ated so th a t  (*) vanishes:

Sw =< P(v)  > {<Sa};«) =< P{v) > {“} (5)

Considering the four nodal variables: wi;wi ;w2-,w2 ' 
as <  Sa > ,  we o b ta in  \ 6 w n \  =  [Pn ] * {5a} and hence, the 
approxim ation(5) in nodal variables is w ritten  as:

ü(v)  =< P(v) > [f,n]_1{«>n} =< JV(i,) > {wn} (6) 

and by using eq.(4) the element DSM is obtained as: 

W k  N D  = <  >  ([A 'H £l]un! +  [ K r d \ d E v ) { ™ n } \  (7 ) 

[^'rd]

where; [KRD]un, = ^ . [ { n " ,} o { - n " } o { - n " , }1{ n " } 1]-, 
k

a n d  [K R D i j]D E v  =  - ( p - )  f 0 ~1D E v N i N -  dr)k 

+  ( v ? h )  f g  rh D E v N iN jd . r } k . 

Elem entary matrices are assembled, and the bisection 

m ethod[2] is used to  find na tu ra l frequencies of beams.

3 .R e s u l t s .  The DSM is used to  find na tu ra l frequen­

cies of a cantilever tapered beam  so A l  =  4 p (F IG .l) ,  

and the results have been compared to those found by 

F.E. Much better convergency ra te  is found by DSM.
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