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An important problem in marine science is the scattering of 
sound by objects buried in underwater sediments. A model is 
desired which accounts for all orders of multiple reverberation 
between a scattering object and the sediment-sea interface, and 
is very computationally efficient. This paper will discuss a 
method for forward scattering from large objects in a 3D layered 
environment. In particular, we detail the use of a "layered 
Green's function" for the solution of the forward scattering 
problem, and can be considered as a generalization of the 
numerical method in [1], There exist presently, many methods 
of forward scattering from an arbitrary object, such as Finite 
Element Methods, Finite Difference methods, Boundary Element 
methods, and Volume Integral equation methods. The FEM is 
very popular presently but has the disadvantage of requiring a 
large number of spatial samples per wavelength relative to our 
method, in order to ensure accuracy. A 2D version of this 
forward problem is implemented in an optimization based 
inversion scheme [1] developed at the Center for Inverse 
Problems, Imaging and Tomography (CIPIT) at the University 
of Utah.

We show the form of the 3-D Layered Green’s function, and 
show how it is utilized efficiently using FFT’s. After 
developing the 3-D Lippmann-Schwinger equation for layered 
media and listing its benefits and disadvantages compared with 
other numerical methods, several examples of forward scattering 
are computed using the integral equation with GL and an 

independent method. The geometry relevant to the forward 
problem is displayed in figure 1. The grid is nx 'n yn z  pixels in 

size, where tix ny, nz are the number of pixels in the x , y and z 
directions, respectively. An inclusion is buried within the 
layered medium, which is completely contained within one 
layer. In the forward problems, the acoustic wavespeed, 
density, thickness, and attenuation of the layers in which the 
object is buried are known. We determine the total field that 
results when a known incident field is projected upon a scatterer 
with known parameter values (wavespeed etc.).

The careful development of the Green's function reveals that 
the BiStab-FFT method developed for the free space scattering 
case is applicable. The development for the Elastic equation is 
very similar to the acoustic case conceptually, but more difficult 
by virtue of its vector character, it will be addressed in a future 
publication. We show the layered media analogue of the 
Lippmann-Schwinger equation and the layered medium Green's 
function, we discretize the layered medium Green's function and 
the integral equation and discuss a fast numerical method of 
solution. Finally results of simulations and comparison with 
FDTD codes are shown and discussed.

In the case of an inhomogeneous body residing within a 
layered matrix, the governing equation for acoustic wave 
propagation in a 3D medium is:

V 2/ U ,  y , z )  + k 2 (x , y, z ) f ( x ,  y, z ) = Sœ (x,  y, z)  

where S is the source function. The total field is broken up 

into scattered and incident field components:

and Inversion in layered media environments
f ( x , y , z )  = f mc( x , y , z )  + f sc( x , y , z ) .  The wave equation for 

the incident field is

V 2f " ' c (x,  y, z) +  k 2L ( z ) f mc(x ,  y , z )  = Sa  (x, y, z)  

Subtracting (3) from (2) the equation for the scattered field i s 
found to be,

V 2f sc(x,y, z) + k[ (z ) f sc {x, y, z)  = - k )  (x, y, z ) f (x ,  y, z) 

where C0 ( z ) is the speed of sound in the layered background

medium, £ ^ (z )  = co is the wavenumber for the

background layered medium, and

k 2 ( x , y , z ) = co2 /  c 2 ( x , y , z ) is the wavenumber 

corresponding to the spatially dependent speed of sound, 

k 2( x , y , z )  = k 2( x , y , z )  +  k 2L{z)  , where ks ( x , y , z ) is the part 

of the wavenumber that is due to the scattering object alone.

CO
See fig. 1. Now sinceks ( x , y , z )  = —

2 A

v c2(x ,y ,z )

defining: YL(x,y,z)'=
\ x , y , z )

- 1 where c<-r is the

/
constant speed of sound of the layer which contains the 
inhomogeneity, gives:

V 2f c( x , y , z ) + k l ( z ) f sc( x , y , z ) = - k 2scy  Lf ( x , y , z )  

The corresponding Lippmann-Schwinger Integral equation 
(LSIE):

/ C O )  = Pwe(r'> ~ ko J J J -  r'\)dx'dy'dz'

where c ( x ,y , z )  = CO /  k ( x , y , z )  is the spatially varying speed
2 2 / 2

of sound, k0 = CO /  csc is the background wavenumber in the 

layer containing the scattering inhomogeneity, co is the 

frequency of the interrogating field, k(x,y,z) is the spatially 

dependent wavenumber of the body to be imaged, p(r) is the 

pressure field, with the spatial dependence on the vector 

r=(x,y,z) shown explicitly, and y(r) is the object function, 

which will be reconstructed from the scattered data, and we have 

used the subscripts cod to indicate the solution dependence upon 

frequency (co) and direction of incident field (0). We also derived 

the Green's function which incorporates the special structure of 

the ambient media, i.e. G co(\r  — f ' \ Y  The discretized version 

of this Green’s function is obtained by convolution with the 

“sine” basis functions: s in c (x )  =  sin(7Dc) /  7DC in the 

horizontal direction and “tent” functions in the vertical
f<S +  z - < S < z < 0  

direction: A (z) s i  /  §< . denoted 
[ < 5 - z  0 < z < < 5

for n=-nx,..0, ,,nx-l. The Green’s function for the 

layered environment is broken up into a correlational and a 

convolutional part: G ^ O n ^ )  =  G y d ^ ^ )  +  G^(|/2|(5) For
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. 7  2 C (u ) f(u )
n=0 Gv {0) =  I Jg(0 ) ---------------du, where U5 is an upper

J icob (u )
u=0

bound introduced by the band-limiting effect of convolution 
with the sine functions. Furthermore

f ( u )  = R ~ R +{ z l ~ l }  + [ l - e ~ iabscSZl ] ,  R \  and R- 

are generalized reflection coefficients from layers above and 

below the scattering object, Z\ =  ^eiC°^sc^ — 1 j /  iCObscS , and

C(u) = ( l  — R~R+)_1. For n^O,

us pflnld)
Gv (|n |5 )=  j J0(u co \n \S )2 D (u )-r-— du

u=o (o2b i §
where

1 -  R RD ( « ) s (  

g(M<S) s  \e~"

r v ■ cosl and

-iœbsc\nS\ + R - R + g < « * „

S( ^ c 5 )}>
M j

The correlational part is very similar, however, it is stored in a 
different order so that the correlation can be applied via a FFT. 
The discretized integral equations are used in an inversion 
procedure as follows. It may be the case that we have limited 
views available to us due to experimental limitations. If so we 
must rely upon multiple frequencies to increase the well 
posedness of the problem. To solve the multiple view and 
multiple frequency problem we minimize the residual between 
the predicted and observed fields at the receiver positions. This 
minimization can be carried out with either a nonlinear 
conujugate gradient procedure, or by an incomplete Newton 
method. The forward problem for an incident field in the 
direction 0 and frequency CO is denoted by ( f )^ . This operator 

yields the scattered field at all receiver positions, given the 
incident field at angle 0, frequency CO, and the present estimate 

for the object function y. —> ^dco- It turns out to be

advantageous to attempt to solve the holomorphic (in f) system

9 =  1......0
r£) = 4w(YW)-<l<,„=0 V—  -

*

\
M M

r£to
co = 1,...,Q

The formula for the Jacobian in the layered medium situation 
in the presence of multiple frequencies, is,

/ - L L  \

via a Newton Raphson procedure, where, as usual, the 8 refers 

to the multiple views and the a> to the multiple frequencies 
available to us. That is, we assume that the noise level in the 
system is zero. We apply the Newton-Raphson procedure to 
this problem with the knowledge that applying a Gauss Newton 
algorithm to the associated least squares problem would give the 
same result. This leads to the overdetermined system

0 = 1,...,©
V

co =

which must be solved for the 7-update Sy: Again, we can use the 
complex analytic version of the Hestenes overdetermined 
conjugate gradient algorithm, adapted for least squares problems 
to iteratively solve this system. This is equivalent to finding 
the minimum norm solution of the equations:

0 = 1,...,©

where Gffl is now the Layered Green's function for the frequency

CO (for simplicity of notation -  which would otherwise get out of 
hand) I will suppress the L superscript on the Layered Green's 
function in the above and that which follows. Therefore, in 
effect, to determine the ^update, <Sy, we merely solve 
multiple view problem for each particular frequency, that is, 
solve the overdetermined system:

the
we

( t 1 -  G k ‘ [y ]]_1 g *) ® l e x e ôyM  = -

K T

i<*L I t f l
which in component form is:

[ l - G f f l [Y] r 1G (B[f0j 5 y (n )= - [ r ^ ) ]

We end the presentation with several reconstructions based on 
computer generated data. The accuracy of the forward problem i s 
guaranteed by comparison with several Bessel function 
expansion solutions derived analytically. We show that this 
method is very effective for propagating fields over large 
distances in layered environments to a computational grid that 
contains a complicated scattering object. The reconstructions 
are carried out using an efficient conjugate gradient and Newton 
based optimization method. The numerical efficiency of the 
method is preserved despite the presence of arbitrary layers both 
above and below the scattering grid by the break-up of the 
Green’s function into correlational and convolutional parts, and 
the careful use of the Fast Fourier Transform. Also we discuss 
the various advantages and disadvantes of the method in various 
geometries. It is compared with the Split step Fourier method, 
and Finite Difference Time domain methods.

Figure 1
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