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SUMMARY

This paper deals with the radiation of sound from the open-end of a flanged rectangular lined duct. The 
duct model consists of a semi-infinite rectangular duct with a lined section of length L. The efficiency of 
the acoustic treatment for the radiated sound is evaluated by comparing the total power radiated from a duct 
with and without the lined section. This procedure also allows evaluation of the directivity patterns. The 
transmitted modal coefficients at the impedance discontinuity junction for a propagating mode (plane wave 
or higher order mode), incident from the rigid duct, are calculated. Simple analytical tools to predict the 
radiation of sound have been developed by using the “baffled membrane” approximation method. This 
model cannot handle reflections from the end, nor radiation to the back, nor an eventual outside flow. 
However, it is well adapted to the case of a lined duct treated with an arbitrary acoustic impedance, where 
an exact solution for even a two-dimensional duct is difficult. This method can be applied to turbofan noise 
and to HVAC systems for possible altering of the radiation pattern by either modifying the radiation field 
or the types of propagating modes.

SOMMAIRE

Nous présentons ici un modèle simplifié du rayonnement acoustique par l’extrémité d’un conduit droit à 
section rectangulaire dont seule la partie terminale est traitée par un revêtement absorbant sur une longueur 
donnée L. Lorsqu’une onde acoustique incidente, constituée d’un mode de propagation donné, arrive sur la 
portion traitée, il se forme une onde transmise et une onde réfléchie, toutes deux combinaisons de modes de 
propagation. Les modes de Fonde transmise sont atténués puisque les nombres d’ondes associés sont 
complexes. S’ils atteignent l’extrémité du conduit en conservant une amplitude suffisante, ils rayonnent à 
l’extérieur. Dans un premier temps, on calcule les coefficients modaux des modes transmis, puis le 
rayonnement acoustique par l’extrémité. Cependant, le modèle proposé ne prend en compte ni les 
réflexions, ni le rayonnement vers l’arrière, ni un éventuel écoulement du milieu extérieur. En revanche, il 
fournit des résultats simples à exploiter et se prête donc parfaitement à une étude paramétrique. De plus, il 
est parfaitement adapté au cas d’un conduit avec parois absorbantes, alors que la prise en compte d’une 
impédance de paroi induit des complications considérables dans la solution analytique exacte, même en 
configuration bidimensionnelle. Finalement, ce modèle a l’avantage de fournir un outil de calcul 
prévisionel du rayonnement acoustique par l’extrémité d’un conduit bafflé.

1. INTRODUCTION

In general, a propagating acoustic mode in a duct (plane 
wave or higher order mode) suffers diffraction at the exit 
plane of the duct. This phenomena results in both reflected 
and incident waves in the duct, as well as the radiation of 
the sound to the outside. The description of the phenomena 
in the near field is quite complicated, and in general, greater 
interest is given to the radiated sound in the far field.

The initial studies on the radiation of sound from an infinite

rectangular flanged duct were conducted by Rayleigh [1]. 
The radiated sound was calculated from the known end 
section acoustic velocity by using the so-called “Rayleigh 
Integral.” This approximation is also known as “baffled 
membrane method.” Many later studies are based on this 
model.

The exact solution of the radiation problem, for the 
fundamental mode, from the end of a semi-infinite circular 
duct was developed by Levine and Schwinger [2], who 
applied the Wiener-Hopf technique [3] to solve the integral



equation. The study showed that the plane wave reflection 
coefficient tends to zero at high frequencies which means 
that an approximate solution can thus be obtained by 
neglecting the reflection from the end at high frequencies. 
Later, Tyler and Sofrin [4] proposed a similar solution for 
the case of a rectangular or an annular duct for any incident 
mode. They found out that, in the case of higher order 
modes, the reflection coefficients need to be considered only 
near the cut-off frequencies of the modes while it tends to 
zero quickly above these frequencies (Morfey [5] and 
Homicz et al. [6]). The case of a lined duct with a known 
acoustic impedance was solved by Zorumski [7], Later, 
Lansing et al. [8] studied the effect of the impedance of the 
duct walls on the transmission-reflection coefficients and on 
the radiation from the end of a baffled duct.

Koch [9] used the Wiener-Hopf technique to study the effect 
of a finite layer of an acoustic material, in a two 
dimensional semi-infinite duct, on the propagation and 
radiation of modes. He showed that the attenuation for a 
given mode is effective only around its cut-off frequency. 
However, the acoustic field has considerably changed 
because of the conversion of the modes due to the presence 
of the liner. Johnston and Ogimoto [10] also used the 
Wiener-Hopf technique to study the radiation of sound from 
the end of a finite cylinder containing uniform flow. Their 
method had to resort to many numerical approximations due 
to complicated analytical developments. Finally, Candel 
[11] developed analytical expression to calculate the 
radiation of acoustic modes from the end of a duct with 
uniform mean flow. He applied Fraunhofer approximation 
to the Kirchhoff formulation (formulation similar to that of 
the baffled membrane). The results were similar those 
obtained by Wiener-Hopf techniques.

The above studies mainly dealt with semi-infinite duct with 
simple geometry. The difficulties arise when the geometry 
or the shape of the duct is no longer straight, where only 
numerical methods (Finite Element or Boundary Element 
Methods) seem to be useful. These numerical methods, 
Kagawa et al. [12], and Wu and Lee [13], can be used to 
solve for ducts of arbitrary cross-sections and with finite 
length. However, these methods are frequency dependent 
and require a long computational time. Finally, Hamdi [14, 
15] developed a method to predict the noise radiated from 
finite length ducts with arbitrary shape. The computation of 
the internal and external acoustic field is based upon a new 
variational formulation of the integral equations.

It is seen that the exact solution for the radiation of sound 
from an open duct of arbitrary shape or for a lined duct is 
not possible. This paper presents a simple method to predict 
the radiation of sound from a semi-infinite rectangular lined 
duct. The acoustic treatment is over length L, near the open 
end. This model, even though complicated due to the 
presence of the lined section, seems to provide more 
realistic results compared to the cases of fully lined and

unlined ducts to determine the attenuation provided by the 
liner. Furthermore, this model will be of great use because 
of its simple formulation in turbofan noise and HVAC 
systems design.

The efficiency of the acoustic treatment for the radiated 
sound is evaluated by comparing the total power radiated 
from a duct with and without the lined section. This 
procedure can also be used to study the directivity patterns. 
However, this model is not suitable to evaluate end 
reflections or ducts with mean flow.

The presence of a lined section induces a discontinuity 
problem which is solved in the first part. The modal 
coefficients of the transmitted modes are calculated from a 
matrix system which depends on the eigenvalues of the duct 
modes.

The second part deals with the radiation problem. A 
comparison between an exact solution obtained by using 
Wiener-Hopf techniques, Candel [11,18], and the 
approximate solution based on the baffled membrane 
method for the radiation of sound from a two semi-infinite 
parallel plates, is also discussed This comparison provides 
a validitation of the model elaborated in the last section. 
Furthermore, analytical expressions are also given to 
calculate the radiation of sound from the end of the duct.

2. SOUND PROPAGATION IN DUCT 
WITH DISCONTINUITY OF 
IMPEDANCE

Sound propagation in a flanged rectangular duct treated with 
acoustic lining over a length L near the flanged end is 
analyzed in this section. The duct and the coordinate system 
are shown in Figure 1. The first section of the duct (section 
I) has rigid walls; the second section (section II) has its all 
four walls treated with an acoustic liners with known normal 
acoustic impedance. Let us now consider an acoustic mode

(m0, n0) incident from the rigid section I with an

amplitude 4̂,„o„o • The acoustic mode, at the junction

between the lined and unlined sections of the duct, is partly 
transmitted into the lined section as a series of modes with

complex amplitudes Aqp and partly reflected back into the

rigid section I with complex modal amplitudes Bnm. The 

acoustic energy in the incident mode is thus partially 
transmitted into the lined section and partially reflected 
back. The determination of the amplitudes of the transmitted 
modes is described in section 2.2.



Figure 1-a: Flanged rectangular duct with an acoustically lined end 
section

Figure I-b: Radiation system coordinates

2.1 Basic Equations

The acoustic field inside the duct is determined by the 
Helmholtz equation

A P  + k 2P = 0  (1)

where P is the acoustic pressure, k —(û/c0 is the wave

number, <d the angular frequency and p, c0 are the ambient 

density and speed of sound respectively. The sidewall 
boundary conditions are

ÔP n
• In section I: — -  =  0  

3n

at x = ±lx/ 2 ;  y  = ±ly /2  

dP
In section II: ------=  ik  AP

<9n

at X =  ±lx/2  ; y = ±Iy/ 2

(2)

(3)

where A is the normalized wall admittance o f a “locally 
reacting” boundary and n is the outward normal.

The general solution for the pressure field in section I of the

duct is given by, (the term em' is implicit throughout the 
paper)

y ) ^

+ Î Î . L ,  'i’(Kmx ) f ( K „ y ) e ‘
m—1n=1

(4)

where.

r)= %{K,y)
(5)

are the eigenfunctions. A cosine function is used for the 
even modes and a sine function for the odd modes. The

transverse wave numbers Km and Kn are determined by 

the boundary condition (2) and are

\KH= ( m - \ ) n l l x 

I K„=(n-V)n / ly
(6)

where I, and /„ are the cross-sectional dimensions o f the■* y
duct in the x and y direction respectively, ‘m ’ and ‘n ’ are 
integers different from zero.

The axial wave number is given by the following dispersion 
equation

Kl=k2-{Kl + Kl) (7)

The propagation o f the waves in the axial direction is 

possible as long as the axial wave number K^m >0 . 

According to equation (7 ), this is true for

CO > c 0 J k I +K]  = < „ ,  (8)

Below this “cut-off’ frequency C0 )̂n, the axial wave

number Kmn becomes a purely imaginary number, and the

propagation factors in equation (4) turn into e ^ "”*1 ; 
which means the amplitudes o f  these modes decay 
exponentially with axial distance from the source: they are

“cut-off’. Notice that the mode (»20, « 0) is just one 

particular mode over all possible (m, n) modes.

Now, let us consider the case o f a treated duct: the general 
solution for the pressure field in Section II of the duct is 
(assuming that reflections from the end o f the duct are 
neglected)



P„(w)= t Z Àtp ÿ{kqx)'v(kpy)e-
q= 1 p = 1

where,

T ( X , x ) = ï ( i , ï )

(9)

(10)

are the complexes eigenfunctions. The transverse wave 
numbers are determined by the boundary condition (3),

K q = ^ n x 

K p = £ pn / l y
( 1 1 )

and the axial wave number by the following dispersion 
equation

k]t = e - { k ] + k l ) (12)

where [I(/ and \Xp are complex numbers. Note, in this 

case, the “cut-off notion” has no physical meaning. 

Assuming K  =  (a  ±  i P )k  , a  is the non-dimensional

axial wave number and P is the damping factor of the mode. 
P should be positive for a mode propagating in z > 0 
direction. This means that we should look for a solution to 
equation (12) that gives attenuation.

Solving equation (9) by the method of separation of 
variables and imposing the boundary conditions (3) leads to 
the following characteristic equations

(k , lJ/2 ] ' z (k , lJ/2)=±ikAIJ/2 (13)

where the term in tangent is used for even modes and the 
one with cotangent for odd modes. Indices ‘e’ and ‘j ’ 
represent q or p and x or y respectively depending on the 
propagation direction.

The axial and transverse wave numbers were computed 
using a numerical scheme developed by Eversman [16, 17], 
where the characteristic equation is transformed into a first 
order non-linear differential equation. The differential 
equation is integrated by using a Runge-Kutta algorithm 
with appropriate initial values. The transverse wave 
numbers are then used to compute the axial wave number 
using equation (12).

2.2 Calculation of Transmitted Modal 
Coefficients

The pressure and acoustic velocity are related by the 
momentum equation

VP = — ik p c 0 V (14)

Using equations (4) and (9), the axial velocity in both 
sections (I and II) can be written as

V,(x,y,z)=(yk  pcs) J ^ ,  x) K_, eI K V( K .  K„  y)]
l m=\ n=1 J

V , ( w M l / f r  p c „ )X  £  4  K „  v ( k g x) t ( je ,  y)
q =1 /7=1

(15)

The unknown amplitudes Aqp and Bmn in equations (4),

(9) and (15) are determined from a system of linear 
equations obtained by applying continuity conditions: the 
pressures and axial velocities in the two sections of the duct 
must be equal at the junction (z = 0) of the lined and 
unlined sections.

Thus, by substituting equations (4), (9) and (15) into (16) 
and using the orthogonality properties of the 
eigenfunctions, the following system for the transmitted 
modal coefficients is obtained

\ v , {x ,y ,  0)=Vu {x,y,0)
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"S' Â î  7 [ k  - K  à + S » » o i ) ( 1 + S » o i ) c  c  ( V  , v  \
/  , 2 -1  IP  m ' l  r ip  V IP  m 'ri )  m0n0 ~  ^  °  m 0 m '  °  n 0 » '  V m V  » 'o " o  /

(17)
<7=1 /;=!

where S is the Kronecker delta and
IJ 2

L V
= —  J ' F f c  x ) jc)û6c (18)

* - l x /2

J,  = f  j  y) 4-(£,
‘ y  - l y l 2

(19)

Equations (18) and (19) are solved analytically. The same 
process as described above leads to a system of equation, as 
in (17) for the reflected modal coefficients. The reflected 
modal coefficients are not discussed here, since the aim is 
to calculate the radiated sound field.

The system indices, m and n, vary from 1 to M m and 1 to 
Nn respectively; while q, p vary from 1 to Qq and 1 to Pp 
respectively after truncation. M m and Nn are the total 
possible propagating modes along ‘x’ and ‘y ’ in Section I. 
Therefore, we have [Qq*Pp] complex equations and 
[Qq*Pp] complex unknown which are the transmitted modal 
coefficients. The final linear system (17) could be re
written as,

[ « ] ■ [ * ] - [ * ] (20)
where,

[ a ] complex vector which contains the modal 

transmitted coefficients to be determined,

[ X  ] complex matrix which depends on the modes (m, n) 

and on the eigenvalues o f  the system,

[ » ]  known vector which depends on the incident mode 

(.m0,n0)  and its amplitude .

The final matrix [X] is square and the dimension o f the 
system is multiplied by 2 to account for the complex 
numbers, therefor the final matrix dimension are [2*Qq*Pp, 
2*Qq*Pp], Further, The truncation is performed at 
Q q=M m+2 and P p=Nn+2, and has been checked when 
calculating all possible transmitted and reflected 
coefficients at the discontinuity junction for any incident

mode (m0, nQ ) . It has been found that it’s worthless and 

time consuming to consider a number o f modes (generated 
in section II) greater than the limit chosen above. Finally, a 
numerical scheme, using LU decomposition algorithm with 
a matrix inversion, has been used to solve the final matrix 
system.

3. RADIATION FROM THE END OF 
THE DUCT

The radiated acoustic power from the duct is evaluated 
using

2* */2 | P(M)  |2
w = \  I

<p =0  0 = 0
2 p c 0

-R sin9 dQ dtp (21)

where P(M) is the complex acoustic pressure at a location 
M in space expressed in spherical coordinates,

M  = (R,Q,ip).
The acoustic pressure in equation (21) can be written in 
terms of surface velocity using the Rayleigh integral,

V ds  (22)

- i k h

h

for the amplitude, and

where h is the distance between the source location 

M 0 ( x 0 , y 0 ) and the receiver location M. The acoustic 

far-field hypothesis leads to the following approximations

h ~  R
k h & k R - D x x0- D y y 0 for the phase 

where,

Dx =k  sin0 coscp (23) 

D =k sin0 sincp (24)

3.1 Rigid Duct

Equation (22) can be calculated analytically for each 

incident mode o f a rigid duct. For a given mode ( m0, n 0) 

the fluctuation of the pressure can be written as, for an 
even-even mode excluding the fundamental mode

(m, «) = (!,!) :

1 V 71 2ti R
4 K. D I Z)

sin(£>x IJ2 )

K l  - D i

sin(Dy ly/2)

K l  - D i

(25)
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The term sin (Z ), l x / 2 )  is replaced by COS( D x l x / l )  in with acoustic treatment and is given by

the case of an odd mode (same thing for the y direction). , \  /  / \
In the particular case of the fundamental mode ' \ x o->yo)=  W ^  P c o)

(m, ri) — (1,1) , the expression (25) becomes:

K
2 tc R k l J y

s in (D , I J 2 )

( D XI J  2)

sin  ( D , ly / 2)

(Dy ly/2)

(26)

3.2 Lined Duct

The axial velocity component in integral (22) is complex

I . tK  K,r'v(£,*MKryo)e-‘it' 
9=1 p=1

(27)

By replacing (27) into (22) and calculating the integral 
analytically, we obtain the following expression for the 
fluctuating pressure:

Dx sm(Z>, 7^/2) cos'[ k , iJ 2 ) -  Kq cos(Dx IJ 2 )  sin(

Dy sm{üy ly/2)  cos(*, A
- D 1

1- Kr cosfz), ly/2)  sin (k , 1, / 2

K 2 - D 2p y

(28)

Similar expressions can be obtained for the other cases by 

replacing the term Dx s in ( / ) Jc Ix / 2 ) c o s [è.q lx / 2 )  with

Dx COS{Dx lx /2 )  s i n ( ^ ? lx/ 2 ) of equation (28), and

K, co s(D ,; ,/2 )s in (x ,/ , /2 )w ith

k ' S m ( D , l j 2 ) c o s { k , l j 2 )  in the case of an odd 

mode (same thing apply for the modes in the y direction).

4. RESULTS

In the existing literature, the possibility of changing the 
radiation pattern by modifying the aperture field has 
received a little attention. While, the attenuation properties 
of acoustical lining have been extensively studied, its effect 
on the radiation pattern has been overlooked.

The validity of the present formulation for the radiated field 
is first discussed. For this, we have compared the present 
approximate radiated field from a simple duct contained 
within two parallel semi-infinite rigid plates with the exact 
Wiener-Hopf solution of Candel [18].

4.1 Validation

Consider now the duct, shown in Figure 2, formed by two 
semi-infinite parallel plates. The acoustic pressure in the 
far-field is given by the Rayleigh Integral which is written 
as follows for the 2D case,

„ k r

r  dl  (29)
r

P ( M ) = i a  p  J V(x0] - Ç 1
I V271

Following the same process as described above, the 
expressions of the acoustic pressure in the far field are 
given below

Figure 2. Geometry o f the radiated problem for a duct formed by two 
semi-infinite rigid plates.



Even modes (different from zero):

V'-K/*)2p (m )=
7î r

sin0 sin(H sin 9)

• Odd modes:

P(M)=.
171 r

( K J k f  - s in 3 9 

(30) 

sin 9 cos(Æ/sin9)

Z = - i Z c cot(Kc d)

where,

Zc = p c0 [l + 0.0571 X- 754 -  i 0.087 X"' 

K c =k[ 1 + 0.0978X - 700 - / 0.189X -

732

595

(33)

(34)

(35)

Zc is the characteristic impedance of the material, Kc its 

wave number and X  =  p f  /g a non-dimensional( K J k f  - s in J9

^  ^  parameter. The admittance of the liner is A= p c0 / Z

Fundamental mode:

p {m ) = .

where,

n r
A. k l

sin (kl sin 0) 

( k l s i n d )
(32)

is the amplitude o f the incident mode m() and Kmo 

is its transverse wave number. The radiation fieled for 

multiple values of k * I (reduced frequency) was calculated 

with the same mode number m0= 2 (incident mode) of 

Candel [18].

The radiation patterns for a duct formed by two semi
infinite parallel rigid plates are shown in Figure 3. The 
radiation pattern shows a larger number of lobes, a greater 
peak pressure, and angular distribution displaced towards 
the duct axis with increasing frequency. Most importantly, 
the approximate solution, represented on the right, agrees 
well with the exact solution, represented on the left, by the 
Wiener-Hopf technique. Even at high frequency, the 
agreement is good even though there is less radiation 
behind the duct aperture. Moreover, the direction of the 
main lobe remains unchanged in both cases and with the 
same sound pressure level.

4.2 Examples

The method described in section 3 leads to a simple relation 
to calculate the radiated far field from any rectangular duct. 
It also provides a useful tool for analytical study of the 
influence of lined duct wall on the radiation pattern.

The liners considered in this example are absorbers made of 
fibrous materials backed by a hard surface. The liners are 
assumed to be locally reacting. For a given flow resistivity 
a , liner thickness d and frequency f, the impedance of the 
liner is determined by the empirical formulae given by 
Delany and Bazley [19]. The principal formula is:

4.3 Discussion

Directivity patterns for lined ducts are shown in Figures 4 
through 10, for liner thickness of 100 mm and fill density of 
25 kg/m3. The treatment length, L, is 1 m and the acoustic 
far field pressure is calculated at a distance (R) of 10 m 
from the opening.

In Figures 4(a), 5(a), 6(a) and 7(a) the radiation patterns of 
the fundamental mode (1,1) are shown for the case of a 
rectangular rigid duct at different frequencies given in 
Table 1. The figures show one main lobe presenting a 
maximum along the duct axis which is a characteristic for 
that mode, and two or several side lobes depending on the 
frequency parameters. The same observation as described 
in section 4.1 can be made here about the lateral lobes: 
when the frequency increase, the radiation pattern shows a 
larger number of lobes, a greater peak pressure, and an 
angular distribution is displaced towards the duct axis.

Figures 4(b), 5(b), 6(b) and 7(b) show the effect of the liner 
on the directivity patterns in the case of a lined duct. It is 
seen that the radiation to the lateral sides is strongly 
reduced while the main lobe is becomes more wider.

The results for a higher order incident mode (2,2), are 

shown in Figure 8 for k lx /2 « 5.5; k ly j 2 « 3.5 and in

Figure 9 for k lx/ 2 «22; k lyj 2 «14. The rigid duct

case is represented in Figures 8(a), 9(a) and the lined case 
in Figures 8(b), 9(b). In the rigid case, the sound pressure 
level at the duct axis is zero and the directivity is stronger 
in the lateral sides with 4 main lobes. The effects of the 
acoustic treatment on the radiation remain as described 
above with a weak radiation in the lateral sides.

Finally, the incident mode (4,3) is shown in Figures 10(a) 
and 10(b) for the rigid case and the lined case respectively

at frequency {klx/2 » 2 2 ;  kly The same

observations are evident.



0= 0 °

k 1=8

k 1=16

k 1=32

Figure 3. Radiation patterns fo r a duct formed by two semi-infinite parallel rigid plates. The exact Wiener-Hopf solution (by Candel 118]) is on the left; 

the approximate solution is on the right for different k I and mode m q = 2 (scale: 10 dB per graduation).

Figure
no.

Incident
mode

Adimensional frequency 

parameter (k lx / 2; k ly / 2)
Normalized
Admittance

Total possible 
modes

Possible modes 
in X direction

Possible modes 
in Y direction

4 (1,1) (5.5; 3.5) (1.15-i 0.53) 10 4 3
5 (1,1) ( i i ;  7) (1.48-i 0.3) 31 7 5
6 (1,1) (22; 14) (1.1-i 0.25) 114 14 10
7 (1,1) (55; 36) (1.09-i 0.15) 668 35 24
8 (2,2) ( i i ;  7) (1.48-i 0.3) 31 7 5
9 (2,2) (22; 14) (1.1-i 0.25) 114 14 10
10 (4,3) (22; 14) (1.1-i 0.25) 114 14 10

Table 1. Description o f the parameters o f Figures 4 to 10.

5. CONCLUSIONS

The radiation from a lined duct with finite length treatment 
was evaluated using analytical/numerical schemes. It was 
seen that the presence of an acoustic liner inside a duct 
significantly reduces the side radiation from the open end 
of the duct. The absorbing walls focus the acoustic energy 
towards the center axis of the duct. While, near the walls, 
the energy is absorbed and hence the pressure oscillations 
are small. The amplitude of the pressure field in the 
aperture is decreased towards the edges. Such a decrease is 
equivalent to a reduction of the aperture area and would

result in a broader main lobe in the radiation pattern and 
thus a lower directionality. However, the decreases in the 
amplitude of the pressure also produce a large reduction in 
the side lobe amplitudes. For the fundamental mode, the 
maximum of the radiated sound is reached at the duct axis 
as expected.

Finally, the analytical expressions developed here provide a 
useful tool to study the influence of a lined duct wall on the 
radiation pattern. It also allows the possibility of changing 
the radiation pattern by modifying the aperture field.

- 1 0 -
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Figure 4. D irectivity Patterns fo r  mode incident (1,1), Adimensional 
frequency param eter (k lx/2; k ly/2)=(5.5; 3.5). (a) rig id  case, (b) 
treated case. Normalized acoustic adm ittance=(1.15 - i .53).

x axis scale is |P(M)| sin 0 cos tp ; y  axis scale is |P(M)| sin 9 sin <p 

and z  axis scale is |p(M)| cos 9
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Figure 5. Directivity Patterns fo r  mode incident (1,1), Adimensional Figure 6. Directivity Patterns fo r  mode incident (1,1), Adimensional
frequency parameter (k lx/2; k ly/2)=(l 1; 7). (a) rigid case, (b) frequency parameter (k lx/2; k  ly/2)=(22; 14). (a) rigid case, (b)
treated case. Normalized acoustic admittance=(l.48 - i .3). treated case. Normalized acoustic admittance=(l.l - i .25).

x  axis scale is |P(M )| sin 9 cos <p ; y  axis scale is |p(M )| sin 0 sin <p 

and z axis scale is COS0

Figure 7. Directivity Patterns fo r  mode incident (1,1), Adimensional 
frequency parameter (k lx/2; k  ly/2)=(55; 36). (a) rigid case, (b) 
treated case. Normalized acoustic admittance=(l. 09 - i .15).
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Figure 8. Directivity Patterns fo r  mode incident (2,2), Adimensional 
frequency parameter (k lx/2; k  ly/2)=(l I; 7). (a) rigid case, (b) 
treated case. Normalized acoustic admittance=(1.48 - i .3).

x  axis scale is |p(M)| sin 0 cos (p ; y  axis scale is |P(M)| sin 9 sin q> 

and z axis scale is |p(M)| cos 9

Figure 9. Directivity Patterns fo r  mode incident (2,2), Adimensional 
frequency parameter (k lx/2; k ly/2)=(22; 14). (a) rigid case, (b) 
treated case. Normalized acoustic adm ittance=(l.l - i .25).

x  axis scale is |p(M)| sin 9 cos <p ; y  axis scale is |p(M)| sin 9 sin (p 

andz axis scale is |p(M)| cos 9

Figure 10. Directivity Patterns fo r  mode incident (4,3), Adimensionalfrequency parameter (k lx/2; kly/2)=(22; 14). 
(a) rigid case, (b) treated case. Normalized acoustic admittance=(l.l - i .25).

x  axis scale is |p(M)| sin 9 cos cp ; y  axis scale is |p(M)| sin 9 sin cp andz axis scale is |p(M)| cos 9
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