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IN T R O D U C T IO N
Speech recognition technology has been significantly advanced 
over the past two decades. The advances can be attributed to 
the breakthrough use of a consistent statistical paradigm em­
powered by increasing quantities of speech data corpus, as well 
as by powerful algorithms developed for model learning from the 
data. Up until now, the technology has been primarily founded 
on the principle of statistical “ignorance” modeling, where gen­
erally unstructured speech models (mainly the hidden Markov 
model or HMM) learn their gigantic number of parameters from 
massive amounts of directly observable speech data.

In this plenary talk, I will first provide a critical review of the 
state-of-the-art automatic speech recognition technology. This 
review will include: 1) Analyzing the ’’Fundamental Equation ' 
of statistical speech recognition: 2) Fundamental architecture 
of the modem speech recognition systems dissected into their 
common, basic phonetic and phonological components; and 3) 
Critical review of the backbone of modem speech recognition 
technology — HMMs. In this review, I will try to analyze why 
the current speech recognition technology is successful in certain 
areas of applications and not successful in other areas. Follow­
ing such a review, I will address a number of key research is­
sues which are aiming to overcome severed fundamental deficien­
cies in the current speech recognition technology. A potentially 
fruitful approach will be outlined. This approach replaces the 
“bead-on-the-string” notion in the linear phonological model 
(uniformly used in the current speech recognition technology) 
by a version of nonlinear phonology in which the atomic speech 
units are constructed from multi-dimensional features overlap­
ping in time. This approach further interfaces such units to 
phonetic models of speech dynamics, which has a statistical 
structure generalizing from the conventional HMM.
S P E E C H  R E C O G N IT IO N : FU N D A M EN TA L EQN. 
First, Let me give a brief description of the statistical frame­
work that underlies much of modem speech recognition re­
search and system development. Let O =  0 \ , 0 ? .  .. . .O t  be 
a sequence of observable acoustic data of speech, which can ei­
ther be speech waveforms, or continuous-valued acoustic vectors 
(or any other type of general acoustic measurements), and let 
W  = Wi. wn. ....Wn be the sequence of words intended by the 
speaker who produces the acoustic record O above. The goal of 
a speech recognizer is to “guess" the most likely word sequence 
W  given the acoustic data O. Bayesian decision theory provides 
a minimum Bayes-risk solution to the above “guessing game ', 
and the minimum Bayes risk can be made equivalent to mini­
mum probability of error if the risk is assigned values of one or 
zero for incorrect and correct guesses, respectively. According 
to Bayesian decision theory, speech recognition is formulated as 
a top-down search problem over the allowable word sequences 
W  based on the posterior probability P{W |0 ):

W  — argmaxw P{W  |0 )  =  argmaxw P(0\W)P[ W). (1)

where P(W )  is the prior probability that the speaker utters W. 
which is independent of the acoustic data and is determined 
by the language model, and P ( 0 \ W ) is the probability that 
the speaker produces (or the microphone of the speech recog­
nizer receives) the acoustic data O if W  is the intended word 
sequence by the speaker. Disregarding the issue of language 
modeling, the above formulation, or fundamental eqn. (1). of 
the speech recognition problem can be reduced to two issues: 1) 
speech generation or production from word sequence to acoustic 
streams — how to accurately compute the probability P(0 |W ) 
7 and 2) a search for the word sequence W  (the operation 
argm axw  in Eqn. 1) that provides the optimal value of the 
posterior probability.

C R IT IC A L  R E V IE W  OF HM M s
There is no doubt that HMMs are currently the most success­
ful technology in many (heavily) constrained speech recognition 
applications. This success is not so much due to the mathemat­
ical formulation of the HMM itself as due to its conformity to 
the probabilistic analysis-by-synthesis formulation epitomized 
in Eqn.(l). Implicit in Eqn.(l) are the need to efficiently com­
pute a production probability P (0 |W ) and the need to learn 
“production model” parameters so as to achieve high accuracy 
in evaluating P (0 |W ). HMMs Eire amenable to efficient compu­
tation and parameter learning thanks to Baum’s work, and thus 
would fit naturally into the probabilistic analysis-by-synthesis 
framework of Eqn. (1). This is entirely consistent with the qual­
ification of an HMM as a speech generator or production model, 
because embedded in the HMM there is a mechanism for con­
verting a word sequence W  directly into acoustic data O.

The theoretical treatment of the HMM as a production model 
is one thing; how reasonably and effectively it behaves as a 
production model is another thing. To examine this latter issue, 
let us first examine the production probability P(Q |W ) which 
appeared in Eqn.(l) into two factors:

P (0 \W )  = P{0\V)P(V\W)  s; maxv P(0[P)P(T\W).,  (2)
V

where 'P is a discrete-valued phonological model and specifies, 
according to probability P{V\W). how words and word se­
quences W  can be expressed in terms of a particular organi­
zation of a small set of “atomic" phonological units; P (0 |'P )  is 
the probability that a particular organization V  of phonological 
units produces the acoustic data for the given word sequence 
W . We shall call this latter mapping device from phonological 
organization to speech acoustics phonetic model

In view of the factorization in Eqn.(2). state-of-the-art speech 
recognizers using phone-based HMMs can be analyzed as fol­
lows. The phonological model 'P is essentially a linearly- 
organized multiple-state phone sequence governed by a left-to- 
right Markov chain, and the phonetic model is simply a tem­
porally independent random sampling from a set of (trainable) 
acoustic distributions associated with the states in the Markov 
chain. Both of these model components are highly simplistic de­
scriptions of the true speech process, and such simplicity limits 
the success of the current technology in free-constrained speech 
recognition applications. Nevertheless, such simplicity permits 
efficient model learning (training) from data, which is respon­
sible for its success in strongly-constrained speech recognition 
applications that contain only a sparse space of phonetic con­
fusion.
FEA TU RE-BA SED  PH O N O LO G IC A L M O D EL
One approach to revolutionizing the phonological model V  in 
speech recognition is to adopt speech units winch are based on 
overlapping phonological features. The features are common 
across languages. They exploit relations and similarities of fea­
ture components across languages, thereby offering opportuni­
ties to share observation data across languages and to generalize 
the observations from a source language(s) to a different, tar­
get language. One key element in constructing the feature sys­
tem for use in speech recognition is to appropriately represent 
the possible feature sequences with their temporal evolution or 
statistical feature-overlapping pattern responsible for produc­
ing the speech utterances corresponding to word sequences (for 
any arbitrary language). For American English, the rules are 
based on the syllabic structure as we have implemented them. 
The feature overlap pattern within consonant clusters pertain­
ing to onset and coda are rather régulai*, as are the overlap 
patterns between onset and nucleus and those between nucleus
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and  coda. O ur current rule set disallows spreads in Tongue 
features between onset and coda (i.e.. cross nucleus) within a 
syllable. For Velum and Labial features, the cross-nucleus fea­
ture spread patterns are constrained to be from coda to onset 
only and not from onset to coda. Feature spreads are perm it­
ted, w ith constraints determined by the prosodic constituent 
boundaries, between adjacent syllables. Once a syllable is bro­
ken down into its constituents, the size of these constituents 
becomes countably small and hence they are easily enumerated.

The feature-overlapping p a tte rn  can be described computa­
tionally as a finite-state autom aton, where each state in  the 
autom aton corresponds to a feature bundle with no precise tim ­
ing information specified. W ithin this framework, the m athe­
matical operations perm itted  in computational phonology can 
be successfully applied. In particular, if a sufficient amount 
of da ta  is available w ith d e t i le d  annotation on such informa­
tion as syntactic, prosodic, morphological, lexical-stress levels, 
syllabic, phonemic, allophonic, and articulatory events, then a 
probabilistic parsing strategy can be developed to automatically 
construct the feature-bundle based finite-state automaton. This 
strategy enables optimal use of a comprehensive set of linguistic 
constraints imposed a t multiple levels of the general hierarchical 
structure of speech.
PH O N ETIC  M ODELS OF SPEECH DYNAMICS
The symbolic nature of the  feature-based phonological model 
by itself does not perm it an  accurate description of the ob­
served dynamic behavior in speech patterns. An integration 
mechanism between the discrete valued phonological model and 
continuous valued phonetic model must be developed. There 
is a general consensus th a t, in human speech production, the 
phonological component acts in a discrete fashion to control 
the running of the phonetic (physiological and physical) pro­
duction “machinery” which, in turn, ensures correct implemen­
ta tion  of the phonologically defined speech production goals. 
This phonetic machinery has a number of distinct components 
including m otor controller (neuromotor command generator), 
articulatory system (sm ooth motion of several articulatory or­
gans driven largely by separate neuromotor commands), vocal 
trac t (VT) acoustic system  (speech signal generator), and the 
auditory system (speech signal transformation). Needless to 
say, these components in  hum an speech communication need 
to be drastically simplified a t the current stage in any func­
tional, com putational model, bu t the key dynamic character 
of the process m ust be faithfully preserved and the dynamic 
model’s param eters must be carefully and accurately learned 
from observable d a ta  in as much a physically meaningful way 
as possible.

O ur research group at Univ. of Waterloo have been guided 
by this general principle during the past several years in pursu­
ing research on various forms of the dynamic phonetic-interface 
model. The three m ain forms, differing with respect to the dis­
tinct levels at which the object of dynamic modeling is posited, 
have been developed. F irst, the acoustic-dynamic model based 
on trended HMM attem pts to condition the properties of the 
dynamics directly on specific feature-coded speech production 
mechanisms. In th a t model, the underlying articulatory-feature 
based phonological units are used to determine either a dynamic 
or a static trajectory  (via the differing orders of polynomial used 
as the trended function) that describes the acoustic correlates 
of the phonological units, and substantial phonetic recognition 
performance improvements have been demonstrated. Second, 
the articulatory-dynam ic or stochastic target model aims at 
accounting for detailed movement behavior of biomechanical 
articulators guided by the multi-dimensional target distribu­
tions defined in the biomechanical articulator coordinate space. 
Third, the statistical task-dynamic model posits the object of 
dynamic modeling in the space of the “task" variable which is 
functionally significant for phonetic implementation of phono­
logically defined speech production goals.

The statistical task-dynamic model we have developed is 
based on the use of either VT constriction or VT resonance 
as the “hidden" dynamic variable. Tlie dynamic process can 
be w ritten as a second-order, target-directed state equation, 
w ith the continuous valued state providing the input to a static

nonlinear function tha t results in observation speech acoustics. 
This statistical nonlinear dynamic system model is employed to 
describe aspects of the physical process of spontaneous speech 
production, where a large amount of speech knowledge about 
the VT constriction or resonance dynamic behavior in  speech 
production is naturally incorporated into the model design, 
training, and decoding/scoring. The statistical nature of model 
design allows the computation of the probability for acoustic 
observations of speech, in a more accurate fashion th an  the 
conventional HMM has provided. Such a model consists of 
two separate components which accommodate separate sources 
of speech variabilities. The first component is a smooth dy­
namic one, linear by nonstationary. The nonstationarity is de­
scribed by left-to-right regimes corresponding to phonological 
units. This way of handling nonstationarity is very close to 
tha t by conventional HMMs. but for each state (discrete as in 
HMM), rather than having an i.i.d. process, we have a phonetic- 
goal-directed linear dynamic process with physical entity of the 
state variable (continuous). Equipped with the physical mean­
ing of the state variable, variabilities due to phonetic contexts 
and to speaking styles are naturally represented in the model 
by varying model parameters. (This contrasts w ith the conven­
tional HMM approach where the variabilities are handled by 
expanding the total number of model param eters.) The second 
component is static and nonlinear. This component handles 
other types of variabilities including V T anatomical differences 
across speakers and channel/microphone variations. The two 
components combined form a nonstationary. nonlinear dynamic 
system whose structure and properties are well understood in 
terms of the general process of human speech production. The 
learning algorithms include ones from system theory, neural- 
network theory, and statistical optimization theory. The VT- 
resonance version of the model has been successfully used by 
my student Jeff Ma and myself in  the six-week 1998 summer 
workshop a t Johns Hopkins University where we demonstrated 
the effectiveness of this model in reducing word error ra te  for 
unconstrained, spontaneous, telephone-line speech recognition 
task defined from the Switchboard corpora.

SUMMARY A N D  PROSPECTS
The current state of speech recognition technology based on 
HMMs can be characterized as being successful in  highly con­
strained tasks while experiencing greater and greater hardship 
as the tasks are becoming less and less constrained. For ex­
ample, for conversational spçech recorded in telephone lines for 
which human listeners typically have no difficulty in. compre­
hension, the best recognizers in the world still produce over 
one third errors in the recognized words. The new paradigm 
of speech recognition outlined in this paper aims to overcome 
some fundamental difficulties of the current speech recognition 
technology. This paradigm is founded on a statistical learning 
strategy driven by linguistic (phonological) and physical (pho­
netic) principles of speech-pattem formation, as well as by func­
tional and computational modeling of such speech patterns. It 
stands in contrast to the prevailing technology characterized by 
blind, data-driven and “ignorance" modeling where phonetic 
and linguistic knowledge sources are used, at best, as exter­
nal constraints, rather than as intrinsic elements of the model 
for speech patterning. The proposed stochastic model of speech 
contains a compactly parameterized structure which jointly rep­
resents contextual and speakmg-style variations manifested in 
the speech acoustics, and it provides a natural mechanism for 
omni-lingual speech recognition.

The research program described here emphasizes the notion 
of structural learning of speech-data generation mechanisms for 
use in designing statistically based speech recognition systems. 
This notion breaks away from the blind, data-driven approach 
currently dominating the speech recognition technology. Our 
current research efforts are devoted to demonstrating the po­
tential success of integrating structural knowledge from speech 
science with the statistical models used in speech technology. 
The research is pursued both a t the theoretical and algorithmic 
development levels and at a practical level aiming at advancing 
core speech recognition technology.
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