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Introduction

Mathematical modeling of low-frequency acoustic fields in 
the three-dimensionally inhomogeneous ocean is a computationally- 
intensive problem that remains intractable unless certain 
approximations are made to substitute the wave equation with a 
parabolic equation or to justify a reduction of the original problem to a 
sequence or 1-D and/or 2-D problems.

The adiabatic approximation [1, Sect. 7.1.3] is frequently 
used when modal concepts are applied to modeling and interpretation 
of the underwater acoustic fields in a range-depenaent waveguide.
For the 3-D problem of sound propagation in horizontally- 
inhomogeneous waveguides with gradual variation of the 
environmental parameters in the horizontal plane, the adiabatic mode 
method transforms into so-called “vertical modes - horizontal rays” 
approximation. Within this approximation, individual modes 
propagate from the CW source, without coupling, along certain 
curves in the horizontal plane. The curves are known as horizontal 
(or modal) rays, and their shape depends on sound frequency, mode 
order, and horizontal gradients of environmental parameters. Modal 
phase is given by an integral of the mode wavenumber along the 
horizontal ray, while modal amplitude depends on the variation of the 
cross section of a ray tube of the horizontal rays [1, Sect. 7.2].

It is typical to make a further approximation and substitute 
modal rays by radiais from the source to receivers. Such an 
approximation is motivated by two facts. First, environmental 
parameters are often measured only along a radial. Second, modal ray 
curvature is normally small compared to the reciprocal of propagation 
range. The straight-ray approximation makes numerical tracing of 
modal rays unnecessary. It greatly reduces computational load and is 
especially important, if not imperative, for modeling broad-band fields 
and/or solving inverse problems in 3-D.

Although the straight modal ray approximation is implicit in 
the bulk of applications, its domain of validity has not been 
established. Moreover, it remains an open question what is the right 
way to calculate the modal amplitude along the radial. An expression 
originally proposed by Pierce [2] has been criticized as inconsistent 
with the reciprocity principle [3,4]. Other expressions for the 
amplitude were put forward in [1, Sect. 7.2.2; 3; 4], In this paper, we 
apply a perturbational analysis of horizontal ray equations to study 
accuracy of the straight modal ray approximation and to systematically 
derive an expression for the adiabatic mode amplitude that is more 
accurate than the ad hoc expressions proposed earlier in the literature.

is related to cross section area of a modal ray tube and can be 
calculated as follows:
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where i/r2 stands for the ij/ value at the receiver. Equations (1), (2) 
are exact within the adiabatic approximation but their application 
requires knowledge of q as a function of the 2-D vector r  and an 
extensive ray tracing in the horizontal plane.

A simpler expression for the field was first proposed in the 
pioneering paper [2] by Pierce. It differs from (1) in that q„ is 
integrated mong a radial from the source to receiver and D„ is 
calculated as

D„ =  2 ) | r 2  -  r i l (3 )

It can be easily verified that (3) and the exact equation (2) are 
equivalent in the special case of cylindrically-symmetric medium with 
acoustic source located on the vertical axis of symmetry. Generally, 
however, D„ (3) is not invariant with respect to interchange of source 
and receiver positions, and therefore the resulting expression for 
acoustic pressure violates the reciprocity principle [1, Sect. 4.2]. To 
correct this shortcoming, some authors suggest using the expression 
[3]
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instead of (3). To simplify notation, we chose here the coordinate 
system in such a way that yt=zy2=0. Then integral in (4) is along an 
interval on the Ox axis; x<=min (xh x2), x>=max (x„ *,).
Brekhovskikh and Godin [1, Sect. 7.2.2] and independently Porter [4] 
proposed another expression:

Acoustic fleld in a horizontaUy-inhomogencous waveguide

Consider acoustic field at a point with the horizontal 
coordinates (jc2, >!2) = r, and the vertical coordinate z2 due to a point 
source at (rh z;). 'Assuming the unit strength of the source and slow, 
gradual dependence of environmental parameters on horizontal 
coordinates, one has [1, Sect. 7.2]
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Here p stands for acoustic pressure, f„ is a normalized shape function 
of a local mode of the order n, q„ =q„(r) is wavenumber of the mode. 
Integration in the exponent is along a horizontal ray r=r( r, f , )  that 
connects the source and receiver, f ,  is the launch angle of the ray, i.e. 
the angle the ray makes with Ox coordinate axis at the source, r  is a 
parameter that defines a point along given ray. Thé quantity D„ in (1)
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as an alternative to (3). This expression for Dr is manifestly reciprocal 
and reduces to the exact result (2) in the special case when 
environmental parameters are independent of the cross-range 
Cartesian coordinate y.

Qualitatively, for the expressions (3) - (5) to be useful when 
applied to a horizontally-inhomogeneous waveguide, true horizontal 
rays should be close to straight lines. However, the error introduced 
by using either (3) - (5) instead of (2) in the general 3-D environment 
has not been quantified in the literature.

Results of a perturbational analysis

To formalize the notion of “almost straight” modal rays, we 
represent the modal wavenumber squared as
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Here Lx and Ly are representative spatial scales of the wavenumber 
variation in the range and cross-range directions. The parameter e  
describes deviation of the horizontalTy-inhomogeneous ocean 
considered from a layered medium. The deviation is assumed small. 
When e=0, the environmental parameters depend on depth z only, 
and all modal rays are straight lines. When e>0, each modal ray has a 
nonzero curvature unless Vg is tangent to the ray. The curvature is 
small as long as e«l.

For the media described by (6), solutions to the differential 
equations governing modal rays [1, Sect. 7.2.1] can be found in terms 
of series in powers of e. At the next step, eigenrays are found 
analytically for given source and receiver locations. Then, mode 
phase and amplitude are calculated. It turns out that all the three ad 
hoc expressions (3) - (5) lead generally to 0( e) errors in mode 
amplitude. That is, (3) - (5) are not generally any more accurate than 
straightforward approximations Dn==k0 \x2 -x,\ or D„=q„ (r3)\x2 -x,l, 
where r3 is an arbitrary point between the source and the receiver.

A more accurate result is given by
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Among the infinite number of approximations to D„ that have 
accuracy G( e1), we have chosen the one that becomes exact in two 
important special cases of translational and rotational symmetry. 
Equation (7) reduces to (5) and is equivalent to (2) when the 
environmental parameters do not depend on the cross-range y. The 
error term in (7) is also zero when the environment is cylindrically- 
symmetric and the Ox axis (i.e., the horizontal line connecting source 
and receiver locations) intersects the vertical axis of symmetry. In the 
particular case of the source lying on the axis of symmetry, (7) 
reduces to (3).

The Fermat principle guarantees that the integral of q„ 
along a straight line between the source and receiver gives mode 
phase d(r2, r, ) to within 0( ê ) .  A second-order phase correction 
arises due to the horizontal ray curvature. The perturbation theory 
enables one to represent the correction explicitly:
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The result is invariant with respect to interchange of the source and 
receiver positions. To determine the mode phase with (8), one needs 
to know only mode wavenumber and its cross-range derivative along 
a radial from the source to receiver. The derivative can be easily 
calculated provided local mode shape functions as well as horizontal 
environmental gradients are known. An explicit expression for Vq„ in 
rather general fluid and fluid/anisotropic solid waveguides can be 
found in [5]. It is essentially a weighted sum of (i) slopes of ocean 
floor and internal interfaces within ocean bottom, (ii) horizontal 
gradients of sound speed and density in water, and (iii) horizontal

gradients of elastic parameters of the bottom.
For the perturbation theory to be valid, excursion of the 

horizontal eigenray from Ox axis should be small compared to Lr  In 
terms of the propagation range R=\x2 -x,l, this condition can be written 
as

e R 2L ; 2 « \ . (9)

Effects of cross-range variation of environmental parameters on 
modal amplitude and phase enter (7) and (8) through terms with 
derivatives of q„ with respect to y. The effects may be very significant 
under the condition (9). In particular, deviation or the mode phase 
from the first term on the right side of (8) can be large compared to 
unity. When the effects of horizontal ray curvature are negligible, 
one can disregard azimuthal coupling and substitute the 3-D problem 
by the 2-D problem of sound propagation in the vertical xz plane. 
From (7) and (8) it follows that the uncoupled azimuth approximation 
(sometimes also referred to as Nx2-D  approximation) is applicable as 
long as the inequality

10"2fc0e2Ly' 2/?3« 1 , (10)

holds in addition to (9).
Implications the conditions (9) and (10) have on 

mathematical modeling of 3-D acoustic fields in horizontallv- 
inhomogeneous deep- and shallow-water environments, will be 
discussed in the oral presentation.

Conclusion

The results obtained can be summarized as follows:
1. A new expression for the adiabatic mode amplitude in 

horizontally-inhomogeneous ocean is systematically derived that is 
manifestly reciprocal, requires knowledge of the local mode

Earameters only in the source-receiver vertical plane, and possess 
igher accuracy than previous formulations.

2. Adiabatic mode phase correction due to horizontal ray 
curvature is calculated analytically.

3. An applicability condition is obtained for the uncoupled 
azimuth approximation.
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