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M atched Non-reciprocity T om ography (M NT)

According to the acoustical reciprocity principle, the CW acoustic 
pressures measured in reciprocal transmissions scheme are identical 
in motionless stationary media [1], Oceanic currents are relatively 
slow, but even slow flows break reciprocity. Observing reciprocity 
breaking effects seems to be the only reliable way o f detecting 
currents by acoustical methods. Usually acoustic tomography of 
currents relies on measuring non-reciprocity o f  travel times along 
acoustic rays. The approach experiences difficulties in shallow 
water due to problems with ray resolution and identification [2],

MNT [3,41 is an alternative full-field technique that generalizes 
Matched Field Processing £5] for the problem o f flow monitoring. 
MFP solves inverse problems through multiple solutions o f the 
forward problem. First, the sound propagation is simulated 
numerically for a large set o f possible models o f the environment. 
Then the simulation results are compared to the experimental data 
using some criterion. The model that provides the best match is 
taken as a solution o f the inverse problem.

To detect currents MNT compares not the acoustic fields, but the 
differences in some acoustical quantity measured (and simulated) 
in reciprocal transmissions. In the absence o f flows, there is no 
difference between reciprocal data and the method correctly gives 
zero current. Any non-reciprocity is transformed into flow field.

Put into practice, this simple idea leads to new problems:

•  the computer model must correctly describe acoustical effects of 
oceanic currents in complicated snallow-water environments

• the method for comparing experimental and numerical results 
should be sensitive to flows, but not sensitive to uncertainties in 
other environmental parameters, like bottom topography and 
sound speed field

•  the method is computationally demanding

These issues and possible solutions are addressed in the following 
sections.

Direct problem

In theory, acoustical fields in motionless and stationary media are 
symmetric with respect to interchange in source and receiver 
positions. However, most o f numerical models do not preserve this 
fundamental property for general range-dependent media. (Ray 
models are a notable exception.) The fields predicted for reciprocal 
transmissions are different. The discrepancy is often related to 
bottom topography and sound speed field. For complicated 
scenarios it becomes comparable or exceeds the effects o f flows. 
MNT inversion with such propagation models will attribute this 
non-reciprocity to currents and will give erroneous results.

An energy-conserving and reciprocal One Way Wave Equation 
(OWWE) for motionless fluid was proposed in f6J. For moving 
media, a closely related Generalized Claerbout PE (GCPE) was 
derived [71. Application of OWWE to moving media is discussed 
in [8]. Efficient algorithm for solving GCPE and OWWE is 
developed in [8. 9], The IFD scheme exactly comply with the 
reciprocity principle and the flow reversal theorem (FKT), which is 
an extension o f  reciprocity principle to moving media [1],

To demonstrate GCPE properties consider propagation o f  sound 
over a rugged wedge shown in Fig. 1. Sound speca field is defined 
by three vertical profiles at 3, 18, and 33 km. The profiles (not 
shown) approximately correspond to conditions in the Strait of 
Florida in summer. Point transceivers are located at 200 m depth 36 
km apart. CW frequency is 50 Hz.

Range, km
Fig. 1. Bottom topography used to test compliance o f GCPE with 
the acoustical reciprocity principle

The acoustical amplitudes and phases predicted by GCPE for up- 
slope and down-slope propagation are presented in Fig. 2. The last 
40 m o f  the propagation paths are shown. The fields at the 
transceivers' locations are identical. The agreement is within the 
limits o f  round-off errors: about 10 dB in amplitude and 10 
degrees in phase.

Complicated bottom topography strongly affects acoustic fields. 
Acoustical imprints o f  currents are much smaller. However, the 
topography effects cancel each other in reciprocal transmissions. 
The subtle effects o f currents are isolated in non-reciprocity.

The developed OWWE and GCPE models are adequate for 
acoustic monitoring o f  flows.

Range, km
Fig. 2. Sound phases (topi and amplitudes (bottom) for reciprocal 
transmissions over the wedge o f  Fig. 1.
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Cost functions

Theoretical and experimental non-reciprocities are compared using 
a measure or norm that in MFP and MNT is referred to as cost 
function. The simplest cost function is RMS difference of non­
reciprocities of complex acoustic pressure. However, this trivial 
cost function has poor performance [4,10].

In real experiment, the exact geometry, bottom topography and 
properties, etc., are never known. Non-reciprocities of various 
acoustical quantities have different sensitivities to environmental 
parameters. Corresponding cost functions will have different 
response to experimental errors.

Theoretical analysis and numerical simulations in [3, 4, 101 
revealed that non-reciprocity of acoustical phase does not depend 
on small variations in sound speed, density, bottom topography and 
geophysical properties, and horizontal separation between the 
transceivers. It is still quite sensitive to the vertical distribution of 
the flow field. On the opposite, non-reciprocity of complex 
pressure is as sensitive to the above mismatches as the one-way 
sound field itself. Non-reciprocity of acoustic amplitude reveals 
only weak dependence on the vertical profile of the flow. Robust 
cost functions should compare phase non-reciprocities. Auxiliary 
amplitude information might be used to give larger weight to phase 
data with good signal-to-noise ratio.

Originally, MNT was formulated for CW signals in accordance 
with MFP [4]. For CW sound, it is important to collect the data at 
many depths. A cost function using CW data from a single depth 
would not provide much resolution. Measuring depth dependence 
of non-reciprocity requires a vertical array of transceivers. This can 
be a synthetic aperture array, as MNT in not sensitive to 
mismatches in propagation range.

Acoustical phase is known with uncertainly of the total number of 
periods. RMS difference o f phases becomes unstable when any 
phase is close to the limits o f [—ti ,7t ] period. A robust cost function 
is constructed from sine and cosine components of phase 
difference. A typical MNT cost function is [10]

W  = 2[l-[;/cosA3)2+{/sinA3)2f '7 ( / ) ]  • (1)

Here I = |/’*+)A,r )Pi<+)A< )[ and Au = arg(p‘+)p*",p,(+)p,(“)) are the 
amplitude weighting multiplier and phase non-reciprocity. Acoustic 
pressure fields p(t) correspond to downstream and upstream 
propagation; tilde denotes complex conjugation. Indexes e" and 
t" refer to experimental and predicted values. Angular brackets 

stand for averaging over a transceiver array.

Phase non-reciprocity is a distinct and non-degenerate function of 
frequency [10, 111. Therefore, for current velocity inversions, the 
data on the depth-dependence of phase non-reciprocity can be 
efficiently combined with its frequency dependence. For realistic 

roblems considered in [10, 11] the inversion was robust with only 
-4 transceivers. Hence, MNT can be implemented using standard 

tomographic transceivers instead of specialized transceiver arrays. 
Cost function for multi-frequency MNT is obtained, e.g., "by 
averaging (1) over frequency.

Linearization

Search of the global minimum of MNT cost function requires 
repeated calculations of sound fields in range-dependent ocean for 
many times. The number of iterations rapidly increases with 
dimension of q space. The problem is strongly non-linear.

To accelerate inversion two linearized methods were developed 
[12], For MFP linearization is possible for variations of the sound 
speed field as small as 1-2 m/s [5], For temperature tomography 
this restriction is usually unacceptable. On the opposite, the 
amplitude of current velocity in the ocean is usually within these 
limits and linearization loo"ks promising. Moreover, the second 
order terms mutually cancel in reciprocal values to be used for 
inversion which favors to linearization.

Non-reciprocity of acoustic phase depends linearly on the

parameters o f the flow model within some interval of their 
variation

S,(q) = 3,(q0) + V3,(qoM q-qo). (2)

The first approach called complete linearization is to substitute (2) 
in (1) and convert Fm r into a quadratic form of q - q „ . Good 
initial estimate q„ is required. In this approximation the full field 
phase non-reciprocity measured as a function of depth or frequency 
is converted into the flow field using existing linear inversion 
methods. These methods intrinsically provide the estimates of 
uncertainty of the inversion results.

The second approach is closely related to the normal mode theory. 
The phases of separate normal modes are calculated with (2) and
then substituted into the standard modal formulas for p '” (q). The 
cost function (1) remains non-linear with respect to q - q 0 . 
However, its computation is much faster. This approach is referred 
to as partial linearization. Partial and complete linearization can be 
combined in one scheme.

Summary

The presented methods are essential components of acoustical 
toolbox for fast, accurate, and robust reconstruction of oceanic 
currents in shallow water environment. Their capabilities are 
confirmed by numerical simulations.
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