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Parabolic equations

Conservation of sound energy in non-absorbing media and 
acoustical reciprocity in stationary fluids at rest are the fundamental 
properties o f acoustic field [lj. Preserving these properties in 
parabolic approximations is essential for accurate modeling o f 
sound propagation in shallow water environments.

An energy-conserving and reciprocal One Wav Wave Equation 
jOWWE) for motionless fluid was proposed in [21. OWWE allows 
improved description o f mode coupling without adversely affecting 
phase accuracy [2], For moving media a closely related 
Generalized Claerbout PE (GCPE) was derived [31. Its solutions 
preserve the acoustic energy in the absence o f  dissipation and 
satisfy the flow reversal theorem (FRT), which is an extension of 
reciprocity principle to moving media [ 1J.

OWWE of [2] is a pseudo-differential equation for 2D problem

i(2k„p',2G2Y  B . (1)5[p Gz\\i]/dx = ik0p~ GG,y + ;1

Here \\i is a complex envelope o f sound pressure, p is density, 
k{| =co/c0 is a reference wavenumber, B is the source amplitude, 
and x  is the horizontal coordinate along the propagation path. The

operators are G = (l + X ) '12 - 1 ,  and G2 = (l + i -) '/4, where X  is a 
dimensionless vertical operator defined below.

The GCPE for motionless medium corresponds to [1, 1] Padé 

approximation o f operator G and two-term Taylor expansion of 

G2 . In [3] it was obtained independently for moving medium by
multi-scale asymptotic analysis:

| - [ ( p p 3)~''2(l + yi)u/] = I " ■ y*yr r j--
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where p = l-ucô ' is a local Doppler factor, u is an in-plane flow 
component. We write the equation in general form with arbitrary 
complex constants a, y, v to reveal similarity between OWWE and 
GCPE solutions. In [3] a  and y were the real coefficients o f Padé 
and Taylor approximations a  = y = 0.25 and v = l .  Finally, the 
vertical operator is

x  = p*(? [pp2 a({pp2)-' s / s z ) / a z + i 2p 2 -  k l  ] . (3)

OWWE (1) is derived for motionless medium with p = l . However, 
we can solve the equation with the vertical operator (3) with 
arbitrary p and p in (1) replaced by p p 3 , in agreement with 
GCPE (2). Compared to GCPE, such solution does not improve 
asymptotic accuracy with respect to the Mach number. But it does 
not deteriorate the accuracy either, and has better wide-angle 
capabilities. Hence, this generalization is useful.

As with other PE's; there are several numerical approaches for 
solving (1,2) (e.g., [4, 5]). The existing algorithms can be applied to 
the new equations. However, the numerical scheme itse lf must be 
reciprocal and energy conserving, otherwise these advantages of 
the original differential PE's will be lost. This is especially 
important for reciprocity, because oceanic currents are slow and 
their effects are small. Even minor errors in numerical solution 
might become comparable with the current-induced effects. The 
existing IFD and split-step Fourier algorithms were found deficient

for the new problem.

Numerical solution

An IFD algorithm preserving the conservation properties o f  the 
differential GCPE (2) with real-valued coefficients was proposed in 
[6]. The numerical solution satisfies discrete analogs o f the 
acoustical reciprocity principle and FRT. Below it is generalized to 
handle OWWE, as well GCPE with source term and complex Padé 
coefficients.

Let us re-write (1,2) in terms o f  new dependent functions

i /  = p-1,JC,M/ and t /  = (pP3)"1/2(l + x /4 ^ / (4)

which are the local energy fluxes [2, 3] corresponding to (1,2). In 
terms o f U the equations become

dU/dx = ik0{p^'n Gp'n ) j+  i^.k0p',2G2} 'B  and (la )
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To convert OWWE into a parabolic equation the operators in (la )  
are approximated by Padé series

and G2- ' « £
1 +Y/X /=ol + Y/X /=o

V/Y/X

I + Y/X
(5)

It is important to have the same set o f  coefficients y, in 
denominators o f both approximations. Using decomposition (5), 
equation ( la )  is solved by operator splitting method J7, Sect. 2.13]. 
Tne equation for each term of the Padé approximation is identicalequation 
to (2a) with y = y , , a = a , , v  =

approximation 
Then solution o f  ( la )  is

J" where each term in the sum is
taken from the solution of (2a) with corresponding /.

Consider equation (2a) on a uniform range-depth grid 
xn =nAx,Zj -  jAz  and apply Crank-Nicolson scheme to discretize 
the equation in range. Then introducing a new dependent function

(l + y x ) 1  {(pp-1)„tl/2(£/ - + t / " ) - J ^ Ç ^ |  (6) 
I/1+1/2 [ ^a *(> J

the differential equation (2a) transforms into an equivalent system 
o f  two finite-difference equations [6]:

U n = (pp 3)"l/2 | l  +  d w  x]©”+1/2 + (4cd2 ̂ ‘rf(- |vpB''+l/2 }|
\n+\H ^

U "*'  =  ( P p 3V 1'̂2 j f l  +  d M  x ]©"tI/2 +  t a x / t 2 V 1 2 ] |
V ln+l/2

d (±) = y ± ik0Axa . Finally, the vertical operator is discretized as
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where t ; = 0.5^(pp3)^, + (pp3) /  j . Assume a point source o f volume

velocity is located at depth grid j s within range cell [ns,ns + 1J. 
Then the source term is presented in discreet form via Kroneker 

symbols as B = a sco2pp2 exp(-/^0xs)Sy ; 5„„ / AxIAz .

To solve the equation numerically one determines Q"*'n  from U”
using the first equation (7) and then substitutes ©n+1/2 to the second
equation (7) to find U . Each step in range requires one solution 
o f a three-diagonal system o f algebraic equations and one back- 
substitution.

Properties o f  the new IFD solution

Exact reciprocity o f the numerical solution is an inherent property 
of the IFD scheme [6], which is valid for arbitrary coefficients 
a ,,y „v , . Compare propagation o f sound between two point 

transceivers located in the grid cells ( j0,0) and ( j u ,M ) . It is 
assumed that direction o f  flow is changed to the opposite in the 
reverse propagation. The same derivation as in [6] proves that 
acoustical fields in direct and reverse transmissions are related by

a . u & r 2 exP('*o*.«/) = ao&T  expH k 0x u ) (8)

where the value O corresponds to © in reverse transmission and 
a0 „  are amplitudes o f  sources. In accordance with the FRT, the 
fields are symmetric with respect to interchange o f  source and 
receiver positions and simultaneous reversal o f the flow direction. 
The same analysis gives the discrete boundary conditions on stair
step interface [6], Reciprocity o f  the OWWE solution follows from 
reciprocity on each split-step. The reciprocal value for point 
sources o f  volume velocity, i.e., the discrete analog o f acoustic

pressure, is y" = -

Energy conservation and reciprocity are equivalent in case o f 
equations with real-valued coefficients [2, 3], However, strict 
energy conservation is more a  problem than an asset. Both the field 
components corresponding to discreet spectrum (normal modes) 
and the components corresponding to continuous spectrum are 
advanced in range without losses. In the solution o f wave equation 
the modes should propagate (probably, with some attenuation), 
while the continuous spectrum should vanish. Cf. analysis in [81, 
propagation of continuous spectrum does not lead to infinite growth 
o f the solution, because the energy is conserved, hence, always 
limited. However, the model does not reproduce an important 
feature o f the wave equation and yields erroneous results.

To eliminate the evanescent spectrum in IFD-based PE's the

operator G is approximated with complex Padé coefficients a ,y . 
The energy o f the discrete solution o f proved to be non-increasing 
for coefficients with Ima = 0 , Irrry < 0 . Attenuation o f  a field 
component with horizontal wavenumber 5 is proportional to 

E2Im y ,  where s = (£,2 - k „ ) / k ^  is a measure o f how wide-angle is 

the modal spectrum. If  k0 is chosen close to horizontal 
wavenumbers o f propagating modes, than additional attenuation of 
modes due to complex coefficients is small. Field components with 
horizontal wavenumbers located far from k0 , including continuous 
spectrum, are effectively eliminated by IFD solution.

In terms o f finite differences precise energy conservation or energy 
attenuation means the IFD scheme is conservative [91, hence, the 
discrete solution is stable. System (7) and corresponding discrete 
boundary conditions [61 are consistent with the original PE and its 
boundary conditions [3]. Together with stability this establishes 
convergence o f the scheme to  the true solution for small Ax, Az [9].

Analysis o f energy conservation for OWWE also demonstrates 
non-increase o f acoustic energy for properly chosen coefficients. 
However, derivation is beyondthe volume o fthe  present paper.

Solution with large range step

The discreet solution presented above uses Crank-Nicolson finite- 
difference scheme in range. The range step should be small for 
accurate solution. A numerical technique for solving a parabolic 
equation with very large steps in range was developed in [5], 
Following [5], we write a formal solution o f  (2a) in operator form:

U(x + Ax) = |exp(/K)](/(x), R = 2a * 0Ax(pP3 T ' "  x ( 1+Y x )^ ‘ (pp 3)'/2

This operator equation is solved by the method o f  operator splitting 
[7], The exponent is approximated by Padé series as

L-1
exp(/7?) = n o -  G,R)(\ + Gi R)~l . Then on each sub-step w e  define

1=0

/+1 / v \, 1
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U '■ =(l + a,/?J(l + CT,i?j U t , /  = 0 , . . . ,£ - l .

Combining the terms these equations are transformed into the form 
o f (2a) with coefficient a  replaced with - 2 /a o , . The solution is 

reciprocal for any set o f a, and its energy does not increase if 
Ima, > 0 , 1  = 0,...,L-1 .

Numerical examples

Due to the format limitations o f the paner, all numerical examples 
are given in the accompanying paper [10].

Conclusions

Exact reciprocity, energy conservation, wide-angle capability and 
large steps in range are simultaneously achieved in IFD solution of 
one-way wave equation. The numerical scheme is robust, efficient, 
and allows generalization to 3D problems. The developed 
algorithm provides accurate description o f acoustical effects of 
oceanic currents in complicated shallow-water environments. The 
software package is free for non-commercial and non-governmental 
use. It is available for download at http://rav.sio.rssi.ru/~-dima. This 
work is partially supported by INTAS and NRC.
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