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In modem naval surveillance, ships and submarines may be tracked 
via their underwater acoustic signatures. In both active and passive 
sonar, arrays of hydrophones are used to enhance the signal-to-noise 
ratio and to obtain directional information. Various techniques exist to 
process the acoustical signals from arrays in order to maximize the 
sensitivity in a desired direction while minimizing the contribution of 
ambient noise Two array processing techniques currently being 
explored at Defense Research Establishment Atlantic (DREA) are 
superdirective and intensity processing. In order to test these concepts 
for underwater applications, it is necessary to simulate the response 
of an array to an acoustic signal in the presence of ambient noise. The 
results obtained from the signal processing algorithms will be 
affected by the spatial and temporal characteristics o f the noise field. 
Since real acoustic data may be unavailable or the statistics may not 
be fully known, simulated noise can be used to probe array perfor­
mance as a function of quantifiable noise characteristics.

In this paper we present three different approaches for generating 
synthetic ambient noise time series data which possess controlled sta­
tistical characteristics. The noise statistics which are specified are the 
probability density function, power spectrum, and the complex cross 
correlation function between pairs of noise time series. The simulated 
noise time series represent different types o f underwater noise fields.

1. Synthetic noise tim e series for a single hydrophone

To create synthetic ambient noise time series from a single hydro­
phone, we used the approach of Walker (Ref. 1) where a one dimen­
sional autoregressive moving average (ARMA) filter is applied to 
discrete Gaussian white noise. ARMA filters, also known as finite 
impulse response filters, are designed to have frequency responses 
that approximate the power spectra of different undersea noise condi­
tions. The filtered Gaussian noise yields a time series with the desired 
spectral properties. ARMA filters have been used successfully to sim­
ulate time series representing a wide range o f processes from car 
traffic noise to financial markets (Ref. 2).

ARMA filters have the form
m

yk = Z aiyk-i+boxk • (1)
i = 1

where, xk is the input white noise value at time sample k and yk is the 
k,h filter output. yk is determined by previous values of y through the 
m coefficients a l5 a2,...am. The quantity b^ is known as the prediction 
error variance and is a measure of how well the power spectrum of y 
matches the spectrum being modelled.

To create a filter, the desired noise frequency spectrum is Fourier 
transformed to obtain the autocovariance function with elements R: 
where j refers to the jth time lag. The filter coefficients a, are found by 
solving the equation:
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The m-order system o f Eq. 3 can be solved with approximately m 3 
operations using Gaussian elimination. However, the matrix R  has a 
Toeplitz structure which can be inverted with approximately n r  oper­
ations using the Levinson recursion algorithm (Ref. 3, p. 359-367).

An example o f an ambient noise power spectrum is shown in Fig. 1. It 
is based on the empirical noise model of Merklinger and Stockhausen 
(Ref. 4) which combines estimated contributions of noise from ship­
ping, surface noise caused by wind and the intrinsic noise o f the 
recording system. The parameters used in the Merklinger and Stock­
hausen model are wind s£>eed o f 40 km/hr and a moderate shipping 
noise level o f 86 dB//|iPa /Hz. A filter designed to model this noise 
spectrum was applied to a Gaussian white noise time series resulting 
in a time series with the power spectrum shown in Fig. 1. Clearly the 
power spectrum o f the simulated noise time series closely resembles 
the power spectrum being modelled.

R; 5 > i Rj-
1 < j  < m . (2)

freq u en cy  (Hz)

Equation 2 defines a set o f m simultaneous equations in m unknowns. 
In matrix form it may be expressed as

Fig. 1 Example power spectrum from the model of Ref. 4 and 
power spectrum o f simulated noise using an ARMA filter.
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2. Synthetic noise time series for a hydrophone array

Although ARMA filters are widely used for time series simulations, 
they are only appropriate for generating ambient noise for a single 
hydrophone. For realistic simulation of noise signals from an array of 
hydrophones, the generated signals must possess the appropriate 
cross-correlation. The degree of correlation of noise signals s j (t) and 
s2(t) measured at two hydrophones is characterized by the normalized 
cross-spectrum S ]2(co),defined as

_ S](to)S*((o)

|S1(co)||S2(co)|
(4)

where Sj and S2 are the Fourier transforms of Sj, s2 and (0 is the 
angular frequency 27rf. The cross-spectrum is a function of the 
spacing between the hydrophones and the directionality and spatial 
coherence of the noise field. A non-zero imaginary part of the cross- 
spectrum indicates an anisotropic component in the noise field. The 
imaginary part is also proportional to the intensity of the propagating 
component of the noise field.

For a spatially isotropic noise field, the real part of the normalized 
cross-spectrum has the simple analytical form

(5)

where k - 2 n l X  is the wavenumber, X  is the wavelength and d is the 
spacing between the hydrophones (Ref. 5). Equation 5 is plotted in 
Fig. 2 along with the cross-spectrum of two simulated isotropic noise 
time series.

noise, the time average of the imaginary part of SIj2 goes to zero. In 
our simulation Im(S12) is constrained to average out to zero by alter­
nating the signs of the phase shifts applied to S i and S2 on successive 
iterations. The final step is to reverse Fourier transform Sj and S2 
yielding two time series with the same individual statistics as Sj(t), 
s2(t) but with the desired complex cross-spectrum.

An example of a cross-spectrum of two simulated isotropic noise time 
series is shown in Fig. 2 along with the theoretical cross-spectrum 
given by Eq. 5. The imaginary part of the calculated cross-spectrum 
(not shown) had a mean of 0.001 with a standard deviation of 0.071. 
The parameters of the simulation were d = 0.6 m and a sampling fre­
quency of 10 kHz. The cross-spectrum shown in Fig. 2 is the average 
of results from 100 blocks of 4096 time series samples which is 
equivalent to a total of 41 s of time series data.

The above approach to simulating correlated noise is computationally 
efficient and can produce time series pairs with an arbitrary real 
cross-spectrum but the imaginary part of the cross spectrum must be 
zero. This is sufficient to represent any noise field which is symmetri­
cal about the axis of the hydrophones. Noise with an arbitrary power 
spectrum can be generated by multiplying Sj and S2 by the appropri­
ate weighting function.

3. Monte Carlo method

The noise simulation method described in Sect. 2 is limited to gener­
ating noise where the imaginary part of the cross spectrum is zero. 
However, noise fields are often anisotropic and have non-zero 
Im(S j 2). To handle these cases a third simulation technique based on 
the Monte Carlo method was developed.

frequency (Hz)

Fig. 2 Real part of cross-spectrum Sj 2(co) for isotropic noise field 
and cross spectrum of two simulated time series.

To generate a pair of noise time series with a pre-defined cross-spec­
trum S ] 2, two Gaussian time series and their Fourier transforms were 
created.’The phase differences A<|> between the complex Fourier com­
ponents of Sj and S2 at each frequency interval were then found. The 
phase of the Fourier transforms were then shifted so that 
A([> = cos"’[Re( S12)]. Thus the relative phases of the frequency 
components are adjusted so that the real part of the resultant cross­
spectrum is equal to S12 without affecting the magnitude of the 
Fourier coefficients, or equivalently, the power spectrum of the time 
series. The imaginary part of the cross-spectrum is a function of the 
phase shift and is given by Im( Sj 2) = sin'(Atj)). For isotropic

The Monte Carlo algorithm randomly assigns directions and phases 
to a uniform distribution of monochromatic sources about a linear 
array of hydrophones. The resulting plane waves are weighted by an 
angular distribution of noise power, and then summed in the fre­
quency domain as a “random walk” of phasors. By comparing the 
resulting phaspr sums, the normalized cross-correlation coefficient is 
obtained. The complex cross-correlation function is then found by 
repeating the above process while stepping through frequency.

The angular weighting function applied to the noise sources depends 
on the physical situation being modelled, such as noise from an infi­
nite plane surface above an absorbing bottom. The axis of the array 
can have an arbitrary orientation allowing anisotropic noise to be 
modelled for vertical or horizontal arrays. Time series possessing the 
appropriate cross-correlation statistics for a given angular weighting 
function can be generated for each hydrophone by distributing the 
phasor sums over frequency and then taking the inverse Fourier trans­
form. The angular weighting function makes a Fourier transform pair 
with the desired cross-correlation spectrum, and thus either a cross­
correlation or angular weighting function can be adapted as input for 
the generation of suitable time series.
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