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B A C K G R O U N D

Localizing an acoustic source in the ocean is an impor­
tan t problem in underwater acoustics [1]. Matched-field 
processing (MFP) methods localize a source by matching 
acoustic pressure fields measured at an array of sensors 
with modelled replica fields computed for a grid of possi­
ble source locations. Matched-mode processing (MMP) 
consists of first decomposing the measured fields into 
their constituent modal components, and then match­
ing the resulting mode excitations with modelled replica 
excitations. An advantage of MMP over M FP is th a t 
subsets of the complete mode set can be considered (e.g., 
in cases where seabed geoacoustic properties are poorly 
known, the matching can be applied only to low-order 
modes which interact minimally with the bottom). A 
disadvantage of MMP involves the modal decomposition 
itself. Modal decomposition represents a linear inverse 
problem that is non-unique and can be unstable (small 
errors on the data can lead to large errors on the so­
lution). In particular, standard modal decomposition 
methods used in MMP can give poor solutions when the 
inversion is ill-posed due to an inadequate sampling of 
the acoustic field [1]. This paper develops a new ap­
proach to modal decomposition and MMP, referred to as 
regularized matched-mode processing (RMMP) [2].

TH EO R Y

The normal-mode model for the acoustic pressure field 
p  at a  range r and depth 2: is given by

p iir/i . p ) Z  M  p ikm r

P ( r , z )  = ------ — —  ^  4>m (z)(f>m (zs) —= ,  (1)
PKz s )  V k m r

where 4>m and km represents the m th mode function and 
wavenumber, respectively, and M  is the total number of 
propagating modes. The field recorded at a vertical line 
array (VLA) of N  sensors can be written

A x  = p, (2)

where p  is a vector of the measured acoustic pressures, 
A  is an N  x M  matrix with columns consisting of the 
sampled mode functions, and x  is a vector of the received 
mode excitations

.......<3)
Modal decomposition consists of solving (2) for an esti­
mate x  of the true mode excitations x.

The m atrix A  is orthogonal if the orthonormal mode 
functions (pm {z) are adequately sampled over their entire

extent. However, such sampling is often not possible. If 
the array contains fewer sensors than modes, the higher- 
order modes will be spatially aliased, and the inversion 
is singular. If the array spans too small a fraction of the 
water column, the lower-order modes will be poorly sam­
pled, leading to an ill-posed inversion. Typically, singu­
lar value decomposition (SVD) or zeroth-order regular­
ization is applied to  stabilize the inversion; however, it 
should be noted these methods are based on determining 
the “smallest” solution in the sense th a t |x| is as close to 
zero as possible. These smallest-model approaches pro­
duce a mathematical solution to the inverse problem (i.e., 
a stable solution th a t fits the data), but do not necessar­
ily produce the most physically-meaningful solution.

A more general approach is regularized inversion, which 
minimizes an objective function ']? th a t combines a term 
representing the data  mismatch and a regularizing term 
incorporating an arbitrary a priori estimate x

$  =  |G ( A x - p ) | 2 +  e |H ( x - x ) | 2. (4)

In (4), G  is a diagonal m atrix with the reciprocals of the 
estimated data  standard deviations on the main diago­
nal, H  is an arbitrary weighting m atrix for the regular­
ization, and 0 is a trade-off param eter th a t controls the 
relative importance of the two terms in the minimization. 
Minimizing '5 with respect to  x  leads to

x  =  x  +  [A tG tG  A  +  0 H t H ]_1A t G t G  (p -  A x ). (5)

An appropriate choice for 9 is the value th a t produces 
a x 2 data  misfit (first term, right side of eq. 4) equal to 
2N , the expected value for N  complex data. Although a 
closed-form solution for 0 does not exist, it can be deter­
mined efficiently using Newton’s method with analytic 
partial derivatives [2].

Applying a trivial prior estimate x  =  0 in (4) and (5) 
leads to the standard zeroth-order regularized solution. 
RMMP is based on the conjecture th a t incorporating a 
physically-meaningful prior estimate can produce a bet­
ter solution than standard MMP inversion techniques. 
The underlying idea makes use of the modelled replica 
mode excitations calculated for the search grid. The 
replica excitations for each grid point are computed via 
a normal-mode forward model, which provides a stable, 
noise-free solution. Thus, if the source is actually located 
a t a  particular grid point, the replica excitations com­
puted for th a t point provide an ideal a priori estimate for 
the modal decomposition. This observation provides the 
basis for RMMP: an independent regularized inversion of 
the acoustic fields for the mode excitations is carried out 
prior to matching with the replica excitations for each 
grid point, using the replica itself as the prior estimate 
x. For grid points a t or near the actual source location,
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using the corresponding replica as an a priori estimate 
and minimizing |x —x| should provide a more meaningful 
solution than minimizing |x|. For grid points away from 
the source location, this procedure provides a stable in­
version, although the regularization may not be particu­
larly physical. At every grid point, RMMP produces the 
maximum match possible (subject to the data) between 
the replica and the constructed modal excitations.

EXAM PLE

This section compares source localization results ob­
tained using RMMP, MMP and MFP for a realistic syn­
thetic testcase. The ocean environment consists of a 
300-m water column with a typical N.E. Pacific sound- 
speed profile overlying a 50-m thick sediment layer and 
semi-infinite basement. The sediment layer has a com- 
pressional speed of cp =  1650 m /s, shear speed of cs =  
300 m/s, density of p= 1.6 g/cm3. The basement has cp = 
2000 m /s, cs =800 m /s and p =  2.1 g/cm3. The acous­
tic source is located at (r, z)=(6km, 100 m). This envi­
ronment supports 12 propagating modes at the source 
frequency of 40 Hz, as shown in Fig. 1. The synthetic 
data for the testcase were computed using the ocean en­
vironment described above; however, all replicas used in 
inversion were computed for an environment with the 
basement compressional speed in error by 300 m /s (i.e., 
using 2300 m /s instead of 2000 m/s). The mismatched 
environment supports 14 modes (Fig. 1).

Source localization results are considered for signal-to- 
noise levels SNR=15, 5, 0 dB, and a variety of different 
VLA configurations. To compare the different localiza­
tion approaches for noisy data, 100 different random re­
alizations of spatially-uncorrelated Gaussian noise were 
added to acoustic field data computed using a wave- 
number integration model. The search grid extended 
from 0-12 km in range with a range increment of 100 m,
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Fig. 1 Normal modes supported by the known and mis­
matched ocean environments shown by solid and dot­
ted curves, respectively. Dashed lines denote the water- 
sediment and sediment-basement interfaces.

and 0-300 m in depth with a depth increment of 10 m. 
The estimated source location for each realization of noisy 
data corresponds to the grid point at which the match be­
tween the measured and replica fields (MFP) or mode ex­
citations (RMMP and MMP) was a maximum, employ­
ing the standard Bartlett correlator. The performance 
of the various methods is quantified by the probability of 
correct localization P, taken to be the fraction of times 
that the localization is within ±  200 m in range and 
± 10 m in depth about the true source location. For 
the matched-mode methods, only the eight lowest-order 
modes were included in the matching process to reduce 
the effects of environmental mismatch. For RMMP, H 
concentrated the regularization on the modes retained. 
MMP employed a zeroth-order regularization.

The results of this study are shown in Fig. 2 for VLAs 
consisting of from 6 to 12 sensors spanning the water col­
umn (Fig. 2a-c), and for VLAs consisting of 12 sensors 
with apertures spanning various fractions of the water 
column from 0.5 to 1 (Fig. 2d-e). Figure 2 shows that 
RMMP produced substantially better localization results 
than MMP or MFP for all array configurations, particu­
larly for low to moderate SNRs.
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Fig. 2 Probability of correct localization P  for MFP (tri­
angles), MMP (open circles), and RMMP (filled circles). 
Results are given for the under-sampled cases for SNRs 
of (a) 15 dB, (b) 5 dB, and (c) 0 dB. (d)-(f) are the 
same as (a)-(c), but give results for short-aperture cases. 
Error bars denote 90% confidence intervals.
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