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B A C K G R O U N D

Determining seabed geoacoustic properties from ocean 
acoustic fields represents a strongly nonlinear inverse 
problem with no direct solution. Global inversion meth
ods, such as simulated annealing (SA) and genetic al
gorithms (GA), provide a practical approach based on 
searching the multi-dimensional parameter space for the 
geoacoustic model that minimizes the mismatch between 
measured and modelled fields [1-3]. However, these ap
proaches provide only the best-fit solution, with no in
dication of the range of acceptable model parameters. 
Recently, GA have been used as an importance sam
pling technique to estimate properties of the posteriori 
probability distribution (PPD) for the geoacoustic in
verse problem [4]. However, the sampling distribution of 
GA is unknown, and hence the PPDs constructed in this 
manner can suffer from both unknown errors and biases.

An alternative approach, based on SA at a fixed tem
perature (i.e., sampling rather than minimizing), sam
ples directly from the PPD [5]. This procedure, known 
as the Metropolis Algorithm (MA) in statistical mechan
ics, can be used to construct an accurate and unbiased 
PPD, which can then be displayed in terms of marginal 
distributions for individual parameters. This procedure 
is described and illustrated here for geoacoustic inver
sion.

T H E O R Y

Both SA inversion and the procedure described here 
for constructing PPDs for inverse problems are based on 
an analogy with statistical mechanics. In statistical me
chanics, the probability P  of a system m  being in an 
energy state -E(m) is given by the Boltzmann distribu
tion

p ( m ) =  exp [—i£(m )/T]
( j £ m e x p [ -P (m ) /T ] ’ 1 j

where T  is the absolute temperature. In the early days 
of scientific computing, Metropolis et al. devised a sim
ple numerical procedure to simulate P(m ). The MA 
consists of applying random perturbations to the system 
(or model) m, and accepting these perturbations if

£ < e x p [-A £ /T ], (2)

where £ is a random number drawn from a uniform prob
ability distribution on [0, 1]. It can be proved that this 
procedure converges asymptotically, i.e., in the limit of 
a large number of perturbations, the MA samples accu
rately and without bias from the Boltzmann distribution

[5]. The evolution of the system to its global-minimum 
energy configuration can be simulated by applying the 
MA while slowly reducing the temperature T  to collapse 
P(m ) about its groundstate.

To apply these concepts to data inversion and ap
praisal, consider a data set d  with the error on each da
tum consisting of an independent, zero-mean, Gaussian- 
distributed random variable with standard deviation a , 
and assume that the a priori information regarding the 
model P (m) consists of a uniform distribution between 
known upper and lower limits. The model PPD is given 
by Bayes theorem which, for the above assumptions, can 
be written

where

P (m |d) =  P (d |m )P (m ) /P (d )  

exp [—E(m ) ] 

im exP [_jB(m ) ] d m ’

E{m) = [d — d(m)]T C p 1 [d — d(m)].

(3)

(4)

In (4), C d  =  (nn ) represents the data covariance ma
trix containing all sources of uncertainty, and d(m ) rep
resents the replica data computed for model m. Noting 
the similarity between eqs (3) and (1), two approaches to 
the inverse problem are available: (i) Maximize P(m jd) 
by minimizing E(m )  using the MA while slowly reduc
ing T. This defines the method of SA, and yields the 
maximum-likelihood solution, (ii) Construct P (m |d ) by 
applying the MA at a fixed temperature T  — 1. This 
approach yields the full PPD for the model.

Typically, for acoustic matched-field inversion, the am
plitude and absolute phase of the acoustic source are not 
known, i.e., we must treat

d(m ) =  A é e w(m) (5)

where w(m) represents the modelled acoustic field and 
A  and 6 represent the unknown amplitude and phase. 
For C d = c tI, the source characteristics can be removed 
by optimizing E(m )  over Aeld to obtain [4]

E{m) =  [1 -  B{m)] |d |2/cr, (6)

where B  is the normalized Bartlett processor

|d*-w (m )|2
B( m) = (7)

|d |2 |w (m )|2

Ideally, an independent estimate of the data error a is 
available; however, if a is unknown, optimizing over a 
leads to the following maximum likelihood solutions [4]

m  =  arg minm [1 -  P(m )], (8)
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â =  \d\2[ l -B (T h )] /N ,  (9)

and the model PPD  is given by

P (m |d )  oc exp{[l -  i?(m)] |d |2/cr}. (10)

To apply the above procedure, the maximum-likeli- 
hood solution m  is computed according to  (8) using an 
optimization scheme such as SA, m  is then used to  de
fine à  according to  (9), and finally the MA is applied 
to  construct the model PPD  by sampling (10), i.e., by 
sampling an energy function

E (m ) =  [1 — -B(m)] |d |2/ô- (H)

at tem perature T  — 1. An efficient method to  achieve 
equilibrium for the MA is to sta rt at high T, cool rapidly 
to T  =  1, and then accumulate results for a large num
ber of iterations. The efficiency can be further improved 
by reducing the perturbation sizes during cooling in a 
manner that reflects the various parameter sensitivities 
(this reduces the number of perturbations rejected dur
ing sampling). We have developed an efficient scheme 
based on using a perturbation size of 10 x the running 
average of the last 30 accepted perturbations to  scale 
Cauchy perturbation distributions for each parameter.

E X A M P L E

To illustrate the calculation of PPD  for geoacoustic 
inversion, this section considers data  collected by the 
SACLANT Undersea Research Centre in the Mediter
ranean Sea off the west coast of Italy [6]. Acoustic 
fields were recorded on a 48-sensor vertical array due 
to a swept-frequency source (300-850 Hz) towed over a 
track with nearly constant bathym etry (average water 
depth approximately 135 m). Based on known geology 
of the region, the geoacoustic model is taken to con
sist of the sediment thickness h, sediment and basement 
sound speeds cs and c^, source range and depth r  and 
z, water depth at the source and array D\ and £>2 , and 
array tilt T  (measured as a horizontal displacement of 
the top hydrophone). A hybrid inversion algorithm that 
combines SA with the local downhill simplex method [7] 
was applied to  determine the param eter values th a t min
imize the B artlett mismatch with the measured acoustic 
fields for a frequency range of 300-400 Hz. Indepen
dent inversions were carried out for six source ranges 
from 2 to  7 km to examine the variability of the results. 
Given th a t the environmental parameters are expected 
to  remain relatively constant with range, this variation 
should provide a rough indication of the relative param 
eter uncertainties. The model PPD was computed using 
the MA with unknown <7 , as described above, for the 
acoustic data  recorded for a source range of 4 km.

The results of the inversion and appraisal are shown 
in Fig. 1. The marginal PPDs in Fig. 1 show consider
able variation in the relative uncertainty of the various 
parameters. For instance, the basement sound speed 
Cb is determined with much less uncertainty (narrower 
marginal distribution) th a t the sediment sound speed cs . 
The results of the six independent inversions (crosses)
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Fig. 1 Marginal PPDs for mismatch and geoacoustic 
model parameters for the source a t 4-km range. Crosses 
indicate the parameter values determined for data col
lected a t all six ranges; dotted lines indicate values deter
mined for the 4-km source. For the geoacoustic parame
ters, the range of ordinate values indicates the parameter 
search interval.

support this, with a much greater variation between the
inversion results for cs than for cp.
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