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IN T R O D U C T IO N

Porous materials are increasingly used in many industries 
such as aeronautics, autom obile, building acoustics to  im 
prove the reverberent properties o f rooms and increase the 
transmission loss o f multilayered structures. Recently, FE  
m odels based on either {u jU }1 or { u ,P }2 formulation have 
been extensively used to  m odel such structures. These m od
els, based on classical linear finite elements, require refined 
meshings to  insure convergence, and consequently a great 
number of degrees of freedom.
T he present approach aim s at reducing the number of de
grees o f freedom while keeping the accuracy o f th e  results. 
To achieve that goal, a {u ,P } formulation based on hierar
chical elem ents (high interpolation order shape functions) is

im plem ented. The results for a single porous material bonded 
onto a rigid wall are presented in the case of acoustical and 
mechanical excitations, and different boundary conditions on 
the lateral faces. T he performance of the approach is under
lined through a comparison with classical poroelastic linear 

elements. T he effect of different interpolation orders for the  
solid and the fluid phase is discussed in the oral presentation.

T H E O R Y

In the following, the case of a single porous material is con
sidered. T he weak {u ,P }  formulation is given by:
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n a tu ra l b o u n d a ry  term s

In equation (1), fip  and d f lp  represent the poroelastic domain 

and its boundary, up is the solid phase displacement, p is the 
fluid pressure in the pores, a_s  and gs  axe the strain and stress 
tensors of the solid phase in vacuo, p  and p22 are the com plex  
dynam ic solid and fluid phase mass density, h porosity, 2  

the coupling coefficient between the two phases, Q  and R  
are poroelastic coeficients. Equation (1) is slightly different 
from the original form2. It allows for an easier application  
of the boundary conditions and coupling conditions through  

the natural boundary terms,
T he theoretical foundation of hierarchical elements lies in the  
way the pressure in the pores and th e  displacement of the  
solid phase are interpolated at any point of the subdomain. 
On one 8-nodes brick elem ent, the pressure in the pores is 

given by:

gen (2)

Where f , r/, (  axe the coordinates on the paxent element and 
vary from -1 to  1. In equation (2), Afj and Gk are polynom ial 
shape functions defined on the parent element. The associ
ated vaxiables q^h and q9ken stand for the am plitude of these 

functions. A m plitudes q jh (1 <  j  <  8) are the  am plitudes of 
the pressure in the pores at th e  elem ent nodes, and Afj are the  
classical shape functions used in finite elements. T he values 
o î  Afj are 1 at node j and 0 at any other node of the considered 
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element. Am plitudes q%h have no simple physical meaning, 
and are not used in classical finite element. The associated  
generalized functions Gk are divided in several categories: side 

m odes, face modes, and internal modes. These functions are 
selected to make com plete polynom ials o f ascending order p. 
Namely, the basis functions of th e  hierarchical variables are 

constructed using Legendre polynom ials. Their number de
pend on the interpolation order p. For further details on the 
selection process, the reader is invited to refer to Babuska3. 
T he approximation of th e  solid phase displacement on one 
elem ent is achieved in the sam e way as for the pressure in the 

pores.
In the results section, two indicators axe considered. For the 
solid phase, the mean square velocity in the three directions is 
computed. The mean quadratic velocity along the i direction  
is practically com puted using the formula:
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W here <  u^h'.û en >  is the row vector of the physical and 
generalized amplitudes relative to the solid phase displace
m ent along direction i. [ M f  ] is the mass m atrix for the solid  
phase divided by p. It contains coefficients corresponding to  
the direction of the displacement. In equation (3), (*) means
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Figure 1: Single porous material on rigid wall with free edges, Figure 2: Single porous material on rigid wall with bonded 
excited by piston motion edges, excited by incoming plane wave under normal incidence

Material h & & O Q

(kN.s/m4)
A

( H
A'

( H
Ps

(kg/m3)
N

(kPa)
v Vs

FM2 0.90 25 7.8 226 226 300 286 0.4 0.265

Table 1: Properties of the material

complex conjugate.
For the fluid phase, the mean quadratic pressure is computed 
using the folowing formula:

< P 2 >= >* [Mf ] {  9n- }  (4)
p I q9nen J

Where < qnh'qnen >  is the row vector of the physical and 
generalized amplitudes relative to the pressure in the pores. 
[.M ! ] is the mass matrix divided by h2/R.

RESULTS

The case of a single porous material of dimensions 
0.35m*0.22m*0.05cm bonded onto a rigid wall is studied here. 
The properties of the material are given in Table 1. Two con
figurations are considered. First, the porous material is sub
mitted to a piston motion and its lateral edges are free. Then, 
the material is excited by an incoming plane wave under nor
mal incidence and the lateral edges of the porous material are 
bonded. The computed indicators, either the mean square ve
locity or the mean square pressure are compared to the results 
given by a FE code developped at the GAUS. This latter code 
based on classical poroelastic linear elements is chosen as ref
erence and is insured to converge for the meshing considered. 
The results are presented on Figure 1 and 2. The number of 
degrees of freedom has been chosen so as to insure the conver
gence of all the indicators within Q.5dB from the results given

by the classical code. For both cases, hierarchical elements 
enable to get very accurate results using only a reduced num
ber of degrees of freedom. Actually, 2144 dof are needed for 
the first configuration and 2480 for the second configuration 
when the classical code is used. In comparison, the present 
approach requires 173 dof for the first configuration and 541 
dof for the second configuration. The indicator chosen for the 
latter, namely the mean quadratic velocity along x direction 
is the one that has the most difficulties to converge.

CONCLUSION

In this paper, a FE code based on the {u, P }  formulation for 
a porous material and using hierarchical elements has been 
designed. The response for a single porous material has been 
computed and compared to the results given by classical el
ements. Hierarchical elements prove to give accurate results 
with less degrees of freedom.
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