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1. INTRODUCTION

New electrostrictive lead magnesium niobate ceramics (PMN) are 
promising materials for realizing actuators or high power trans
ducers for macrosonics or underwater acoustics. Because of their 
large dielectric permittivity, PMN materials have strains roughly an 
order o f magnitude larger than those o f lead titanate zirconate 
(PZT) ceramics. However, the use of PMN as active material in 
actuators or transducers presents some difficulties : highly non-lin- 
ear properties (Fig.l), temperature and frequency dependence of 
dielectric permittivity, DC bias field needed. To help in the design 
o f PMN-based transducers, a numerical modeling capability is 
needed.

method o f weighted residuals is used for the static and transient 
analyses to get the finite element formulation [7]. For transient 
analysis, the set o f equations for the electrostrictive structure in a 
fluid domain is written:
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2. CONSTITUTIVE EQUATIONS OF PMN ELEC
TROSTRICTIVE CERAMICS

PMN electrostrictive materials are relatively new and complicated 
in behavior [1], Non-linear constitutive models for electrostrictors 
are not as mature as models for piezoelectrics [2]. The model used 
in this paper is Horn’s model [2,3]. Choosing the electric displace
ment and the stress as the independent state variables, the constitu
tive equations can be written at constant temperature:

Sjj = S ijkl Tkl + QijmnDn,D n
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where Syj(j is the elastic compliance at constant electric displace

ment, Tj( j is the stress, Dm  is the electric displacement, Em  is the 

electric field, Sjj is the strain, Qjjm n  is the electrostrictive coeffi

cient, 5m n is the Kronecker symbol, Pg is the spontaneous polar

ization and k is a new material constant.

Fig. I. Typical strain-electric field for electrostrictive and 
piezoelectric ceramics [4]

3. FINITE ELEMENT FORMULATION

The electrostrictive finite element is developped in the ATILA code 
[5,6], Starting with N ewton’s law, Gauss’s law and the equation o f 
électrostriction in the electrostrictive material, Helmholtz’s equa
tion in the fluid and the Sommerfeld’s radiation condition, the

where U, <|), E, E and Q  are the vectors o f the nodal values o f the 

displacement, the electric potential, the pressure, the external force 

and the electric charge respectively. [Ku u ], [KUp], [Kpp] and [M]

are the classical stiffness, piezoelectric, dielectric and consistent 
mass matrices o f a piezoelectric finite element model. [0] is the 
zero matrix. For the fluid:

[D°] = ^ [ D ]

[D, ]  = p,cf [D]

where [H], [M j], [D] are the stiffness, consistent mass and damp

ing matrices, p f  and Cf are the density and the velocity o f the fluid

and R is the radius o f the spherical boundary which limits the fluid 
mesh.

4 . VALIDATION

4 .1 .  S t a t ic  a n a l y s is  o f  a  PMN b a r

To validate the previous development, a long electrostrictive bar 
with electrodes located at both ends is analyzed at ambient temper
ature. A static mechanical force is applied at both ends and a quasi
static (1 Hz) electric field parallel to the length is prescribed. 
Numerical results are compared to measurements made on a PMN- 
PT-La (0.90/0.10/1%) bar at NUWC New London [8], The finite 
element mesh of the bar consists o f two axisymmetrical elec
trostrictive elements. These elements are eight-noded isoparametric 
quadrilaterals.

Figure 2 presents the quasi-static strain versus quasi-static applied 
electric field for various prestresses. The static strain is not meas
ured. In both figures, good agreement is obtained between comput
ed results and measurements in a broad range o f  applied electric 
fields and prestresses.

4 .2 .  D y n a m i c  a n a l y s is  o f  a  PMN b a r

We study the dynamic response o f the same PM N bar. Two types of 
excitations are considered:

® a step in voltage which generates a vibration o f the bar at constant
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Fig. 2. Strain versus electric field at various prestresses

electric field E. The corresponding natural frequency is noted fg.

• a step in charge which generates a vibration of the bar at constant 
electric displacement D. The corresponding natural frequency is 
noted fj).

Knowing these two frequencies, the coupling coefficient of the bar 
is calculated from the expression:

This expression is similar to Ikeda’s coupling coefficient definition 

from elastic constant c ^  and c® [9].

Figure 3 displays the displacement at the end of the bar versus time 
for an initial voltage of 2000 volts. The mesh of the bar is 
unchanged. The thin line represents the vibration at constant E and 
the bold line the vibration at constant D. The corresponding fre
quencies are obtained using Discrete Fourier Transform. In figure 
4, the coupling coefficient is represented for various initial voltages 
and voltage steps. Saturation is observed around 45% at high elec
tric field. The observed electrostrictive coupling coefficients are 
smaller than usual piezoelectric coupling coefficient of PZT8 
ceramics ( k ^  around 60%).

Fig. 3. Displacement at the end of a PMN bar submitted to a 
voltage (2000 V) or charge (23.8 nC) step versus time 

(initial voltage of 2000 V)

4.3. T r a n s i e n t  r a d i a t i o n  o f  a n  e l e c t r o s t r i c t i v e  PMN
SPHERE

In this section, we study the response of a PMN spherical shell to a 
step in voltage. The finite element mesh consists of 6 axisymmetri-

Voltage Step (V)" Initial voltage (V)

Fig. 4. coupling coefficients o f a PMN bar for various initial 
voltages and steps

cal electrostrictive (eight node quadrilateral) elements. Figure 5 dis
plays the displacement in the middle of the PMN shell versus time 
for LC (Lumped Constant model) and FE (Finite Element) models 
for an initial voltage of 4000 V and a voltage step of 1000 V. The 
thick line correspond to the analytical model, the thin line corre
spond to the finite element model. A very good agreement is 
observed between the LC and FE models. Figure 6 displays the 
deformation of the sphere (full line) versus the structure at rest 
(dashed line) at time t = 8 10-5s. We notice that the PMN shell is 
always in compression.

Fig. 5. Displacement of the PMN shell submitted to 1000 V 
step (initial voltage of 4000 V) versus time. Thick line: semi- 
analytical model (LC), thin line: finite element model (FE)

L.

Fig. 6. Strained structure of the PMN spherical shell submit
ted to an initial voltage and a voltage step. Full line: strained 

structure, dashed line: initial structure
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1. INTRODUCTION

To evaluate the radiated power from a vibrating structure, the most 
popular approach consists in the integration of the active acoustic 
intensity normal to the structure surface. This method needs the 
evaluation of the pressure field on the surface of the structure. The 
latter can be calculated by classical discretization methods such as 
the boundary elements method (BEM). Nevertheless, this method
ology suffers from the computational cost associated to forming 
and solving the frequency dependent linear system. If the system is 
large (complex structure or extended fre
uency range), the memory of the computer can be the limiting fac
tor so that an out of core solver may be required which adds to the 
computational cost. To answer to this limitation, an iterative solver
[2] can be used in order to avoid the construction of the discretized 
full matrix system in memory but the efficiency and stability of the 
algorithm can be disastrous.

To evaluate the acoustic power radiated by a collection of M 
sources (or a distributed volume source), the simple way consists in 
the integration of the far-field pressure over a sphere surrounding 
the M sources [6], This operation is very expensive due to the need 
to calculate the field at numerous evaluation points on the sphere. 
Indeed, the operation cost is of order M at each evaluation point. 
Using a multipole expansion [4,7] for the set of source points, the 
field can be efficiently evaluated at points sufficiently far from a 
sphere enclosing the source points. This condition is always 
respected in the case of the evaluation of the radiated power since 
we need only to integrate the far-filed pressure over a sphere. A 
similar methodology has been already developed by Atalla and al
[3], However, the authors develop a multiple multipole expansion 
because they use only the first three tenus for the expansion.

In the case of baffled plane plate, the pressure field is gov
erned by the Rayleigh’s integral [6]. Since this integral can be 
developed in a multipole expansion, it is shown in this paper that 
the radiated power can be found accurately and cheaply by inte
grating the far-field pressure over a hemisphere.

2. EQUATIONS

Consider a set of M punctual acoustic sources in a sphere Sa with 

centre a. Their positions are (xj, ..., xjyj) and their intensities are 

given by (q^, ..., qjyj). The acoustic pressure field caused by these 

sources at a point r can be written
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and k is the wave number. In this way, the cost of the evaluation at 
one point is of order M. If the evaluation point is outside the sphere 
Sa, the field can be expanded in an outer multipole expansion of the 

form
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functions.

the spherical harmonics and hn the spherical Bessel

Using the Gegenbauer formula [1,4] which writes the spherical 
Bessel functions in terms of spherical harmonics, the multipole

expansion coefficients, Cnm, can be written after few algebraic

manipulations,

t|
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The expansion (2) is exact for an infinite number of terms. 
Nevertheless, we always truncate the expansion to N so that each 
evaluation point has to be sufficiently far from the sphere Sa. Also, 

the terms hn(x) in the expansion (2) grow quickly with n for n>x. 

This fact can cause numerical instability. One more time, this diffi
culty vanishes if the point r is far from the centre of the expansion 

a. From equation (3), we can see that coefficients Cnm do not 

depend on the observer position. Thus, once these coefficients are 
computed for a set of source points, the far-field at a large number 
of observer points can be cheaply evaluated using equation (2). 
This is the basic idea behind the efficiency of the approach for eval
uation of the radiated power.

The acoustic power radiated by the collection of acoustic source 
points can be evaluated by integrating the far-field pressure over a 
sphere [6]

n
p(R,9,cp)\ 

2 p , c
-R2 sin <9 d9d(p

Introducing the multipole expansion (2) in the last expression, we 
obtain
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Posing and , the last equation becomes
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