
A C o m p a r i s o n o f S o f t w a r e T o o l s f o r t h e I m p l e m e n t a t i o n o f S p a t i a l S o u n d s i n V i r t u a l

E n v i r o n m e n t s

Yu F. and M. Bouchard
School of Information Technology and Engineering, University o f Ottawa, Ottawa, Ontario, K IN 6N5

1.0 Introduction

Since its earliest days, the human-computer interface has been
almost entirely visual. Until fairly recently, audio was limited to
some kind o f altering “beep” for output. Then CD-quality stereo
sound appeared in the multimedia-equipped computers.
Conventional stereo can easily place a sound in any spot between
left and right loudspeakers. However, with true 3-D sound using
binaural technology, the source can be placed in any location - right
or left, up or down, in the front or in the back [Blau97]. This can be
useful when a listener is presented with multiple auditory streams,
when information about the positions o f events outside o f the field
o f vision is required, or when a listener would benefit from
increased immersion in an environment [Dura94]. Current applica
tions o f 3-D sound include computer games, videoconference sys
tems, complex supervisory control systems, civil and military air
craft warning systems and computer-user interfaces. More and
more, producing 3-D sound is essential to build a virtual environ
ment. In this paper, we review some o f the current software tools
available for creating the illusion of three-dimensional sounds in
virtual environments using binaural technology, and we attempt to
evaluate their performance and compare their virtues and short
comings.

2.0 C++ implementation using HRIRs available from the World
Wide Web

To find the sound pressure that an arbitrary source x(t) produces at
an ear drum, all that is required is the impulse response h(t) from
the source to the ear drum. This is called the Head-Related Impulse
Response (HRIR), and its Fourier transform H(f) is called the Head
Related Transfer Function (HRTF). The HRTF captures many of
the physical cues required for source localization [Bega94], Once
the HRTF is known for the left ear and the right ear, it is possible
to synthesize accurate binaural signals from a monaural source. The
HRTF is a surprisingly complicated function o f four variables: the
three space coordinates and the frequency. Systems based on
HRTFs are able to produce elevation and range effects as well as
azimuth effects [Ming98]. This means that, in principle, they can
create the impression o f a sound being at any desired 3-D location.
In practice, because o f person-to-person differences and computa
tional limitations, it is much easier to control azimuth than eleva
tion or range. Nevertheless, HRTF-based systems are fast becoming
the standard for advanced 3-D audio interfaces.

A basic and effective spatial audio system is shown in Figure 1,
which provides a conceptually simple way to use HRTFs for spatial
audio. Basically, it consists o f two “convolution engines”, each of
which can convolve the same audio input stream with a head-relat-
ed impulse response (HRIR) retrieved from a table o f measured
values. The outputs o f the convolvers go through amplifiers to
headphones worn by the listener. The use o f headphones eliminates
the problem o f cross-talk between loudspeakers [Sen97], [Gard98],
however it has its own drawbacks such as user fatigue and sounds
that sometimes seem to come from inside the head [Bega94], The
first implementation that was tested was thus a simple demo C++
program that convolves an input monaural file with HRIRs and pro
duces a 3D sound stereo output file. The HRIRs that we used in our
demo were downloaded from MIT Media Lab web site [Mit]. No
attempt to compensate for the response o f the headphones or the lis
tener’s ear canal was made.

As a whole, the 3D effect o f the demo was found to be good. The
sound source can be felt moving around the head instead o f moving
between the two ears. Since no appropriate HRTF transition mech
anism (i.e. “crossfading”) was added when a sound source was
moving from one location to another, ‘click’ sounds could be heard
in the demo.

Fig 1. HRTF-Based System

3.0 Real-time Implementation using DirectSound3D™

DirectSound is the wave-audio component o f Microsoft’s DirectX
API [Brad98]. Actually it serves as a middle layer between appli
cations and device drivers, providing numerous sound management
capabilities. DirectSound3D (DS3D) is a subset o f the DirectSound
API calls, that allows for the placement of sounds using a 3-D-coor-
dinate system instead of a simple “left-right” pan. DS3D also auto
matically calculates things like attenuation due to distance and
Doppler shift caused by the relative speed between the listener and
the sound source. One demo was implemented to show the func
tionality o f this API. Up to two sounds can be added into the demo,
which are represented by two dots in a 2-D plane. The graphical
interface o f the demo is shown in Figure 2. For each sound source,
parameters such as the position, velocity, minimum and maximum
distance can be changed individually. The minimum distance is the
distance where the volume stops to increase as a listener gets near
a sound source, and the maximum distance for a sound source is the
distance beyond which the sound does not get any quieter. The user
can change the Doppler factor and rolloff factor (i.e. sound attenu
ation with distance). As in input, the demo uses a Wave monaural
sound file. DirectSound3D also provides an additional feature:
sound cones. A sound with an amplitude that is the same in all
directions at a given distance is called a point source, but in
DirectSound3D it is also possible to have sound sources that will
only generate sound in a specific region with the shape o f a cone.

The 3D sound effect of the DirectSound3D demo was found to be
very good, even better than that o f the HRTF-based system. Since
appropriate crossfading between HRTFs is used by the
DirectSound3D API, the ‘click’ effect which could be heard in the
C++ demo o f Section 2 was removed.

4.0 Real-time implementation using Java3D™ sound

Java3D is a high-level platform-independent 3-D graphics and
sound programming API that can reduce application development
time, simplifying all of 3-D graphics and sound programming. A
Java3D program creates instances o f Java3D objects, which is at
least partially assembled from the Java3D class hierarchy, and
places them into a scene graph data structure. The scene graph is an

Canadian Acoustics I Acoustique Canadienne Vol. 28 No. 3 (2000) - 74

arrangement of 3-D objects in a tree structure that completely spec
ifies the content of a virtual universe, and how it is to be rendered.
There are several sound leaf nodes that define the different sounds
in a virtual universe [Kevi98]. A BackgroundSound node defines
an imattenuated, nonspatialized sound source that has no position or
direction. It is useful for playing a mono or stereo music or an
ambient sound effect. A PointSound node defines a spatially locat
ed sound whose waves radiate uniformly in all directions from
some point in space. A piecewise linear curve (defined in terms of
pairs consisting of a distance and a gain scale factor) specifies the
gain scale factor slope. A ConeSound node object defines a
PointSound node whose sound source is directed along a specific
vector in space. It is attenuated by gain scale factors and filters
based on the angle between the vector from the source to the lis
tener, and the ConeSound’s direction vector. There is also a
Soundscape node, which defines the attributes that characterize the
listener’s aural environment, such as gain scale factor, atmospheric
rolloff, reverberation, distance frequency filtering and velocity-
activated Doppler effect. Multiple Soundscape nodes can be
included in a single scene graph.

A simple demo was built to show the functionality of a point sound
node in the Java3D API. The point sound source (represented by a
color cube), was moved around the listener in the frontal plane. The
user could use the mouse or keyboard to navigate in the virtual uni
verse. The 3D sound effect of this implementation was found to be
almost as good as the demo of section 3, except that there was a bit
more trouble distinguishing above from below.

5.0 Real-time implementation using a sound node in VRML

VRML stands for “Virtual Reality Modeling language”. It allows
specifying dynamic 3-D scenes through which users can navigate
with the help of a VRML browser [Chri97], most of which are
plug-ins for Netscape and Internet Explorer. A sound source model
in VRML looks like two ellipsoids, one nested inside the other,
with the inner ellipsoid sharing a foci with the outer one. The sound
source emanates from the shared ellipsoid foci, and goes out in one
direction toward the second foci of the outer ellipse. When a listen
er enters the outer ellipsoid, he/she hears the sound very quietly,
and as he/she approaches the inner ellipsoid, the volume increases
(the volume drops from the inner ellipsoid to the outside ellipsoid
proportionally with the square of distance). Once the listener is
inside the inner ellipsoid, the sound becomes ambient, which is to
say the volume remains constant, and no 3D effect is computed. No
sound is heard outside the outer ellipse.

To compare the sound functionality of VRML with those in Java3D
and DirectSound3D, three sound nodes were programmed to move
around the listener in horizontal, frontal and median planes, indi
vidually. The VRML browser that was used was Internet
Explorer™ with the CosmoPlayer™ add-on. The 3D sound effect of
the VRML demo was quite good, but the DirectSound3D imple
mentation was slightly better.

6.0 Comparison of implementations and conclusion
Different ways to implement 3-D sounds in virtual environments
have been studied through demo building. The 3D sound perform
ance was only measured by a simple subjective listening evalua
tion, but the 3-D effect of all demos was quite impressive with or
without visual cues. There are some obvious implementation dif
ferences between the different methods. It is quite complicated and
time-consuming to build a HRIR-based system with the C lan
guage. But such a system has a high flexibility: extra acoustic char
acteristics such as echoes and diffraction could be added, and also
different sets of HRIRs could be used for each individual to
improve the performance. This cannot be done with other tech
niques. Also the exact spatialization algorithm that is used in the
other techniques is unknown. The most interesting aspect of
Microsoft DirectSound is that it provides a standard interface for
the developers, which is supported by almost all the hardware man
ufacturers. This is important because software-emulated 3-D
sounds are computationally expensive, and DirectSound can pro
vide hardware acceleration. On PCs with audio cards supporting
DirectSound acceleration, the host CPU consumption by the 3-D

75 - Vol. 28 No. 3 (2000)

sound system will thus not be a problem.
The DirectSound3D API can deal with all kinds of input sound
files. On the other hand, Java platforms only support the following
audio file formats: AIFF, AU and WAV, linear or u-law PCM
encoded. But the most attractive aspect of Java3D is that it is an
API of Java, which is a platform-independent language. Once it is
compiled, it can be run anywhere. Java3D also provides more con
trol on the attributes of the acoustic environment to be rendered, for
example with the Soundscape nodes. This is unique among all the
techniques tested. Since VRML is just a modeling language used to
describe 3-D scenes, it is the easiest way to implement 3-D sounds
into a virtual environment. But it has to pay for these advantages
with low flexibility and less efficiency. Also the implementation of
spatialization in a VRML sound model is browser dependent. So it
will be very difficult to allow consistent, reliable, high-quality 3-D
audio on all platforms, using VRML. This platform-dependency
may be the most serious disadvantage of VRML sound nodes.

To conclude, the best language or implementation tool to integrate
3-D sounds into a virtual environment depends on the application
itself. If the efficiency is crucial for your application,
DirectSound3D is a good choice, just as many computer game
developers did. If your application is required to be platform inde
pendent, Java3D may be used instead. But if it is required to reduce
the development time to its minimum, VRML is an interesting
alternative, since it is the easiest one to use. And do not forget the
most important rule of all in 3-D sound implementation: the content
is the king.

References

[Bega94] Begault, D. (1994). 3-D Sound fo r Virtual Reality and
Multimedia Academic Press, Boston, MA, 1994.
[Blau97] Blauert, J. (1997). Spatial Hearing 2n“ edition MIT Press,
Cambridge, MA.
[Brad98] Bargen, B. and Donnelly, T.P. (1998) Inside DirectX
(Microsoft Programming Series). Microsoft Press.
[Chri97] Marrin, C. and Campbell, B. (1997) Teach Yourself VRML
2 in 21 Days. SAMS Net.
[Dura94] Begault, D.R. and Erbe, T. (1994). “Multichannel Spatial
Auditory Display for Speech Communications,” J. Audio Eng.
Soc., Vol. 42, No. 10, pp. 819 - 826.
[Gard98] Gardner, W.G. (1998). 3-D Audio Using Loudspeakers,
Kluwer Academic, Norwell, MA.
[Kevi98] Sowizral, H., Rushforth, K. and Deering, M. (1998).
Java3D API Specification. Addison Wesley Longman
[Ming98]Ming Z., Kah-Chye T. and Er M.H., (1998) “Three-
dimensional Sound Synthesis Based on Head-Related Transfer
Functions,” J. Audio Eng. Soc., Vol. 46, No. 10, pp. 836 -844.
[Mit] http://sound.media.mit.edu/KEMAR.html
[Sen97] Sen M.K. and Canfield, G.H. (1997) “Dual-Channel
Audio Equalization and Cross-talk Cancellation for 3-D Sound
Reproduction,” IEEE Trans.On Consumer Electrics, Vol. 43, No. 4,
pp. 1189- 1196.

Fig. 2 Demo for the DirectSound API

Canadian Acoustics l Acoustique Canadienne

http://sound.media.mit.edu/KEMAR.html

