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1. Introduction

Following theoretical models based on the Biot theory, the solid 
phase of an isotropic elastic porous material is defined by three vac­
uum elastic properties: Young’s modulus, Poisson’s ratio and loss 
factor. However, under vacuum conditions, closed cells trapped in 
the materials may burst and change the properties of the material. 
To prevent this problem and for the sake of simplicity, current tech­
niques based on static or dynamic measurements with compression, 
shear or torsion tests are performed in air to characterize the elas­
tics properties.

In the classical compression test sketches in figure 1, frequency, 

boundary conditions, initial strain, and the air saturating the mate­

rial may affect the transfer function measurement (F(L)/xq) uses to 

compute the elastic properties of an open-cell porous material. The 

objective of this paper is to analyse one of these effects, the bound­

aries conditions, and to derive by the way a measurement method 
for the three elastic parameters.

2. Influence of boundaries conditions

For the compression test sketches in figure 1, the shape factor of the 
porous test specimen is defined by the ratio of its cross-sectional 
area to the total area of the stress-free surfaces. For sample of large 
shape factor, the transfer function is strongly dependent on the 
shape factor if  the ends of the sample are bonded. That is, under 
compression, the sample bulge out as shown in figure 2.

Because the shape factor is related to the geometry of the sample 

and to the Poisson’s ratio, many works have been done with the 

goal of using it as a secondary effect methods, using two different 

geometry, to compute both the Poisson’s ratio and the Young’s 

modulus [1]. However, it generally led to the development of meth­
ods that requires at least one sample of negligible shape factor 

effect since the appropriate shape factor are not known exactly [2], 

These samples are inconvenient since they are long, slim, and then 
subjected to buckling.

Our investigation with an axisymmetrical poroelastic FEM model 
showed us that the measured transfer function (F(L)/xq) may be 

correlated to the shape factor of the test specimen for different 

Poisson’s coefficients as shown in figure 3. In figure 3, H, H°o and 

R are the static () transfer function with boundary conditions effects 

(N/m), the static transfer function with a zero shape factor (N/m), 

and the specimen radius (m). These results were obtained using an 

in-house axisymmetrical poroelastic FEM code.

3. Measurement method

The method proposed here is to first offset the dynamic transfer 
function measurement (H(<»)) to a static value with an analytical 
relation. This yields the static transfer function H. Using figure 3, 
a relation between the transfer function H , the Poisson’s v, and the 
L/R ratio can be drawn:
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where i simply refers to a specific test specimen, G is a curve fit 
relation established from the FEM results (figure 3), and A is the

surface area (m^) of the sample. For two specimens of different 
L/R ratios taken from the same material, since both have the same 
Young’s modulus, it is then possible to write the following relation:
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Solving the latter equation for v is a simple matter using any kind 
of minimisation algorithm. The solution for v can then be used in 

relation (1) to compute the Young’s modulus.

In applying this procedure, one then makes the assumption that 
boundary conditions and frequency have independent effects in the 
frequency range of measurements. This holds true if measurements 
are taken well above the first resonance. Another important 
assumption is that the saturating air does not influence the meas­
urements. As stated by Mariez et al [4], this is true at relatively low 
frequencies. The same assumptions are also valid for the loss fac­
tor.

Because the Young’s modulus was considered as a real algebraic 
value until this point, the damping factor is then simply the ratio of 
the imaginary part to the real part of any transfer function used for 
the computation.

(1)
Fig. 2 - Representation o f the bulge out effect o f the specimen 

under compression test with bonded ends.
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Table 2 - Elastic properties measured with the proposed method

L/R

Fig. 3 - Correlation between the transfer function and the L/R 

ratio fo r  a specimen under the compression test with bonded ends

4. Results

To partly verify the validity of the method, numerical simulations 

using the parameters given in Tables 1 and 2 are compared to 

standing wave tube measurements of the sound absorption coeffi­
cient for a 54.4-mm thick foam specimen. The numerical simula­

tions are done with software MNS/Nova™ [5] which is based on 

the Biot and Johnson-Champoux-Allard models [3,6]. Both rigid- 
frame and elastic-frame models are used. For the elastic-frame 

model, sliding edge conditions are used.

Figure 4 presents the comparisons. It is noted that the numerical 
simulations are in good agreement with the measured sound 
absorption coefficients. The simulation using a rigid-frame approx­
imation does not show the frame resonance of the foam backed on 
the rigid wall. In this case, the use of the elastic-frame model gives 
better predictions.

The discrepancies between the elastic-frame prediction and the 

measurement may be due to the additional friction loss between the 

specimen contour and the tube. Also, the numerical sliding edge 
boundary conditions are not a perfect representation of the experi­

mental one. The experimental one is something between bonded 

edge and sliding edge.

Table 1 - Foam parameters measured with LCMA/GAUS facilities

Porosity 0.960

a Flow resistivity (Ns/m^) 49 541

a » Geometrical tortuosity 3.82

A Viscous characteristic lengths (10'® m or |im) 65.4

A ' Thermal characteristic lengths (10'® m or jj.m) 141.0

Pi Bulk density (kg/m3) 47.45

E Young’s or elastic modulus (Pa or N/m2) 337 300

v Poisson’s ratio 0.15

r| Damping loss factor 0.135

Frequency (Hz)

Fig. 4 - Experimental results used to explore the validity o f the 
proposed method
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