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1. Introduction

The present article is devoted to the characterization o f  the 
vibratory behavior o f heterogeneous structures, i.e when material 
or geometrical discontinuities are considered. Usual displacement 
formulations are rapidly limited when heterogeneity density and 
high frequency are considered. Energetic methods seem to be well 
adapted in this case, because an energetic response o f the system 
is spatially smoother and more frequency robust than a classical 
displacement response.

Statistical energy Analysis (SEA) [1] is successfully used to 
characterize mean energies of lightly coupled subsystems; 
however the method is valid at high frequency when each mode of 
a subsystem is assumed to be uniformly probable over a frequency 
band. The energy flow method is based on the derivation o f an 
equation o f diffusion for homogeneous structures, in analogy with 
heat transfer [2]. An approximate solution is derived when 
quantities are spatially averaged over half a structural wavelength 
[3-4];. Difficulties however occur when spatially averaged 
energetic boundary conditions have to be specified, meaning that 
the method is not well adapted when heterogeneities occur.

In this paper, a new formulation characterizing the energetic 
diffusion in a rod with cross-sectional area discontinuities is 
presented. At low frequency, it appears that the energy flow is 
governed by heterogeneities since an heterogeneous gradient 
exists. The theoretical result is validated by a numerical 
simulation for a clamped-free heterogeneous rod which is excited 
at the free end by a power source.

2. Theoretical analysis

The structure under study is shown on Figure 1: It is composed of 
N  elements, element p  has a length Lp and contains np 
homogeneous rod o f random lengths Ipi and cross-sectional areas 
SPii, the index p ,i  meaning homogeneous rod /' from element p. The 

mean potential energy density for element p  is < JJ > .
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Figure 1. Description of two consecutive rod elements for random 
scheme.

The active power which is transmitted through an homogeneous 
rod p ,i  is expressed by

< Q > p , r e|j°
dun ,
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where E  is the complex Young's modulus and upi is the 
longitudinal displacement which is solution o f the equation of 
motion for homogeneous rod outside of the external force points 
[5],

Displacement and axial force continuity between homogeneous 
rodsp ,i  an d p,i-\  [5] enforces power continuity

{< Q > p j ) x o (< e > A/-l)VM=, > (2 )

as well as the continuity o f the second derivative if one derives 
equation (1) twice.

dx dx1
< Q  > P,i-1 . (3)

Similarly, equation (1) yields the following discontinuity 
condition for the first derivative o f the power

dx
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Let us define the first semi-local derivative o f the power evaluated 
at the junction between elements p - 1 and p
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and the second semi-local derivative
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Assuming that dimensions o f  elements are small, and that the 
power slowly varies over each element (i.e. the structural 
wavelength is large compared to element lengths), then Taylor 
series expansions result in
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where the heterogeneous gradient is defined by
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from the heterogeneous density o f element p
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If one supposes that the heterogeneous gradient is different from 
zero, it is possible to neglect the first term in the right-hand side of 
equation (8) compared to the second term. This means that the 
second derivative o f the power does no diverge in space. This 
argument is detailed below.
According to the local energy balance for steady state and outside 
o f the input power points [4], the mean potential energy density of 
element p  is defined by
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and the semi-local energetic gradient by 
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Using equation (7), it is then possible to formulate an equation of 
diffusion, expressing the energy flow from mean potential energy 
density

V* < U > + a l'ct < U > =  0

where
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is the heterogeneous coefficient of diffusion. Assuming a 
spatially-uniform coefficient, the solution o f  equation (13) is

< U  >= A exp( - a  x) (15)

from constant A , identified from boundary conditions. Potential 
energy density' increases as the heterogeneous density does. The 
solution given by equation (15) stays admissible, as we saw, if the 
second derivative o f  the power is not great compared to first 
derivative. That means that the energy flow provided by loss 
factor, that is the first term o f equation (8), goes in the same 
direction than the energy flow expressed by equation (13).

3. Numerical results

Let us consider the clamped-free heterogeneous rod illustrated on 

Figure 2, excited by a known input power (< q  >n ) =< q  >h l .
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Figure 2. Free-clamped excited heterogeneous rod.

It is composed o f AM-00 elements, each o f them containing n=4 
homogeneous rods o f  random cross-sectional areas, and is excited 
at a frequency J=1000Hz. The Young’s modulus is

Er=2A x \ 0 " P ci, the loss factor r|=0.01 and the density 
p~ lS00kg/m \  the lengths o f homogeneous rod are similar,

/ = 10_î m. In order to validate the equation (13), the energy flow 
due to heterogeneities must decay in the same way as the energy 
flow due to loss factor, therefore one fixes constant decrease of 
the heterogeneous density along the length o f the rod. The value 
o f the energetic gradient theoretically predicted by equation (13) 
is compared to the numerical value derived from the exact 
equations on Figure 3.

Figure 3. Semi-local energetic gradient :low frequency results, 
numerical value (— ■), theoretical solution (■•■)•

The theoretical formulation is very well validated as the two 
curves fit perfectly.

4. Conclusion

In this work, a new formulation characterizing the energy flow in 
heterogeneous rod was derived when heterogeneities are modeled 
by cross-sectional area discontinuities. This method is semi-local 
when energetic diffusion is identified between elements 
containing a random scheme of heterogeneities. The energetic 
diffusion is governed at low frequency by cross-sectional area 
discontinuities as an heterogeneous gradient occurs. The 
theoretical results succeed in estimating the exact value provided 
by the numerical simulation when the energetic gradient is 
spatially plotted along the length of the rod.
A next important development in analyzing the energetic diffusion 
in heterogeneous structures is to study more complicated 
structures, such as beams with cross-sectional area discontinuities 
and plates with local masses. A long-term objective is to predict 
vibratory behavior o f industrial structures such as car frames. It 
involves another important study when identifying energetic 
boundary conditions for heterogeneous coupled subsystems, that 
is local transmitted powers and energies.
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