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Dealing with vibro-acoustic problems brings to the choice o f  a 
method to solve them. Those methods are usually classified in 
two categories: low and high frequency ranges. This is justified 
by the reachable or needed precision to achieve (versus the 
numerical cost).
I f  we want to keep the easiness o f the FE-based or modal 
methods in writing the equations o f  the problem, we need to 
reduce the numerical size o f the problem. For that purpose, we 
can see the boundary element methods and modal sampling 
ones as a great improvement.
In this paper, let's see how describing the primal and the dual 
fields on a very particular set o f  variables leads to straight
forwardly written equations along the boundaries. Moreover, on 
a rather simple generic vibro-acoustic problem, we will be able 
to derive the coupling equations in an easily understandable 
way.

Choice of the variables
Primal and dual local patterns are expanded on a basis o f  plane- 
or cylindrical-wavelike functions. These functions are selected 
among the solutions o f the local equation o f motion. The local 
variables are then the amplitudes { a ^  o f these functions.
In order to ensure the wave compatibility from one domain to an 
other when dealing with their coupling, we introduce two 
intermediate sets o f boundary variables : {dj}j and {Fj}j. These 
variables are the trace o f  the local patterns projected, along the 
boundary on a Fourier series-like basis.

d i = PUj a j

Fi =P2,ij 3j
with P, and P2, operators of projection.
The equation of coupling are then derived in term of boundary 
values; the Fourier-series decomposition allows us to write the 
coupling in a straight forward manner. The whole problem is 
then solved along the boundaries o f the domains through the 
variables {d^Fj} which are compatible with the description o f 
wave propagation : the local primal and dual fields can be 
reconstructed thanks to their projections on these boundaries. 
Therefore the modal behavior can be approached thanks to those 
boundary generalized values, whereas the propagative aspect is 
induced by the choice of the field variables. And the Wave 
Compatibility Condition (W.C.C.) ensures the connection 
between the two representations.

Vibro-acoustic example
Let's study the response to a point harmonic acoustic excitation 
o f  a rigid walled cavity, except on one side. This problem is 
considered as bi-dimensional, thus the flexible part will be 
described as a beam loaded with a continuous 2D field of 
pressure.

The number o f  generalized variables, N + l, for a portion (or 
face) o f the boundary is given by the highest apparent number 
o f wave lengths ,N , along that portion. Then, the total number 
of variables is limited to (N +1 ) x (element's number o f faces). 
We divide the domain in sub-elements so that the point exciting 
source can be located on the boundary of one o f those elements. 
The excitation is then taken into account in the force continuity 
equations through this interface. In our case, if  we divide the 
cavity in triangular elements, we have 3x(N +l) variables per 
element.
The boundary generalized values are the coefficients o f a 
Fourier series which represent the projections o f  each wave onto 
the boundary o f  the sub-domain under scrutiny.

The fields o f pressure p and the normal velocity v are described 
as introduced in the first part. The number o f waves used in the 
basis is limited to 3N+3 per triangle sub-domain.

p (x ) = a j <Dj(x)

v(x ) =  ipco a jV O  j(x).n  

with j  = 1, ... 3N+3.
The boundary generalized values {d^FJ are the amplitudes of 
the waves' projections on this very boundary.

P(s) =  F aj G aj(s)  

v (s) = icoda j D a j( s )  

with s the curvilinear variable, G aj Fourier function (sinus, 

cosinus) or dirac function located at the corner between two 

faces, D a j  Fourier function or linear interpolating function 
associated to one comer.

As to the beam, the transversal displacement w  and the shear 

stress t are also expressed in the same way: the wave description
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is used for the field patterns and the generalized-variable 
description is used along the boundaries:

t(s) =  F bj G bj(s)

w(s) = dbjD bj(s)

Example o f a loaded beam
In order to deal with the coupling o f the flexible wall (the beam) 
and the cavity, we must first study the response o f a clamped- 
clamped beam to an harmonic continuous loading.
The equation o f motion gives the relation between the 

transverse displacement w (x ) and the continuous loading f(x).

w (4) - k 4w  =  f ( x )  (1)

The clamped boundary conditions at the ends o f the beam 
define a  set of equations to be satisfied
by the integrative constants. According to the type coupling 

here, f(x ) takes the form :

f ( x )  =  Fc  co s(k  x )  or Fs s in (k  x )  (2)

— 2n  m  * 9

with k = — — , L the length of the beam and (Fc , Fs ) e  R  “

Actually, k  is linked to k  by a relation involving the hysteretic 
damping of the beam, named r| :

k  = k ( l  - ir |)

Solving (1) with (2) we obtain the response in amplitude as 
drawn on the following figure.

For a continuous variation o f  k , we have drawn the exact 
response o f the beam to time and space harmonic loadings. Yet, 
the WCC response o f the same beam is observed by using the 
following approximation :

2 n m  .
—  (1 -  i r |)

with m, an integer number and

3îE<g,(k)<2ZL(ElO
L L
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By this mean, we are able to connect the solution o f  the loaded 
beam to the kind o f coupling we use between the beam and the 
cavity (through Fourier functions).
The 3 different types o f responses are compared on the figure at 
the bottom o f this page. All the caracteristics o f the beam are set 
equal to 1, the loading is in cosinus with 5 period along the 
length o f the beam. The observation point is at 3/10 o f the 
length from the end o f  the beam.

The step-like variations are due to the sharp variations o f  k  
when the frequency changes. Such effect becomes négligeable 
as the frequency rises up to medium and high ranges.

Coupling equations
We use this example to derive the coupling equations for the 

vibro-acoustic problem with Fc or s =  Fbm. Each boundary 
variable is associated to a solution for the beam just like in the 
previous part. The final solution is obtained by adding all those 
single solutions.
The coupling between the flexible wall and the cavity, whatever 
dimension they might be is obtained by expressing their wave 
compatibility conditions through the set o f Fourier variables 

defined at their interface {Faj,daj} and {Fbj,dbj}.

Since we use the same kind o f functions to describe the primal 
and the dual patterns along the interface (between the flexible 
wall and the cavity), the coupling equations are obtained by 
writing the continuity o f the boundary variables from one 
domain to another. These equations represent the Wave 
Compatibility Condition.

Conclusion
The method presented in this paper allows us to solve vibro- 
acoustic problems in a straight-forward.
Once described on a local propagative basis, the primal and the 
dual fields are projected on the boundaries o f each sub-domains 
where the coupling equations are derived thanks to a Fourier- 
like writing o f the projected patterns.
This method keeps some advantages o f so-called low 
frequencies ones and remains applicable to medium and high 
frequency ranges thanks to the condensed description o f the 
primal and the dual fields.
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Finally, the WCC coupling with a bi-dimensional neighboring 
domain leads us to choose :
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