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Overview

The response o f a structural-acoustic system in the mid-frequency 
range typically consists o f  both long and short wavelength behav­
ior. Modeling the short-wavelength behavior detemiinistically is 
usually computationally prohibitive and structural-acoustic tech­
niques such as statistical energy analysis (SEA) are often adopted. 
However, SEA cannot adequately capture the long-wavelength 
global behavior of the system. Recent work aimed at addressing 
the mid-frequency problem has led to the development o f a hybrid 
approach [1] based on a wavenumber partitioning scheme. This 
paper provides a brief overview o f the approach.

1. Introduction

Consider the frame-plate structure illustrated in Figure 1. The 
structure consists o f  a stiff beam framework with two bays. A thin 
flexible plate has been inserted into one o f the bays and the struc­
ture is excited by a point force applied to the framework as indicat­
ed.

Figure 1. Frame structure typifying behavior o f a system in the 
mid-frequency range.

The response of such a structure typically consists of a mix o f both 
long and short-wavelength behavior over the frequency range of 

interest and is representative of a much wider class o f mid-fre- 
quency problems. Such problems include the response o f aero­
space and automotive structures which contain stiffening frames, 
shells and enclosed acoustic cavities with disparate modal densities. 
The response o f the framework in the previous example is domi­
nated by long wavelength global behavior, while the response o f the 
plate is dominated by short wavelength local behavior.

One approach to analyzing the dynamic behavior of the structure 
would be to model the interactions between the various beam and 
plate subsystems using an SEA model. However, the beam sub­
systems are typically strongly coupled and have relatively few 
interacting modes; their response therefore tends to be dominated 
by global rather than local dynamic behavior. In such circum­
stances SEA tends to overestimate the mean response due to coher­
ence effects [2] and doesn’t capture the resonant variations in the 
framework response.

One might therefore attempt to analyze the dynamic behavior o f the 
structure using an FE model. However, the high modal density of 
the plate subsystem complicates such an analysis. Much o f the 
computational effort involved in creating the FE model and solving 
the global eigenproblem is associated with capturing the short 
wavelength local behavior o f the plate. Even i f  this computational 
expense is affordable one finds that the short wavelength behavior 
is also very sensitive to perturbations in the properties o f the plate. 
One is then uncertain as to whether the predicted dynamic interac­
tions between the plate and the framework are representative of 
those that occur in nominally identical structures.

It is therefore natural to question whether one can perform a hybrid 
analysis which combines FE and SEA in order to address the mid­
frequency problem. This is the motivation behind the Resound 
method described in [1], In Resound the subsystems in a system 
are partitioned into those that exhibit long wavelength global 
behavior (for example the framework in the previous example) and 
those that exhibit short wavelength local behavior (the plate). The 
latter are referred to as fuzzy subsystems. The long wavelength 
global behavior is then modeled detemiinistically using FE while 
the short wavelength local behavior is modeled statistically using 
SEA. There is clearly an interaction between the two partitions of 
the model and this interaction is fully accounted for with the calcu­
lation of various fuzzy coupling terms.

2. Local and global basis functions

The local and global partitioning described in the previous section 
is an important part o f  the Resound approach and merits further dis­
cussion. In general, a lumped-parameter model o f a structural- 
acoustic system can always be obtained by expressing the response 
in terms o f a finite number o f basis functions. Equations o f motion 
are then formulated using Lagrange’s equations or Hamilton’s prin­
ciple. In Resound a distinction is made between short wavelength 
local basis functions (defined over the various fuzzy subsystems) 
and long wavelength global basis functions (defined over the whole 
system). The global basis functions are chosen so that they provide 
a good basis with which to describe the long wavelength global 
deformation o f the system. Similarly, the local basis functions are 
chosen so that they provide a good basis with which to describe the 
local short wavelength behavior o f the various fuzzy subsystems.

The global basis functions may be obtained by suppressing the 
local dynamic behavior in a (coarsely meshed) FE model. A con­
venient way to achieve this suppression is to apply Guyan reduction 
[3] to the interior degrees o f freedom associated with each fuzzy 
subsystem. Additional techniques have also been developed to 
suppress individual wavefields within a FE model [5], The local 
basis functions are then taken to be the local component modes 
associated with each fuzzy subsystem. The local component modes 

are never computed explicitly; instead, asymptotic estimates o f the 
component modal properties are employed. There are clear simi­
larities between the basis functions used in Resound and those used
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in a component mode synthesis model [4]. Indeed, Resound may 
be viewed as a form of statistical component mode synthesis.

3. Reduction of the equations of motion

The partitioned equations of motion for a given system can be writ­
ten as

(1)

where D is the dynamic stiffness matrix, f  is the generalized force 
vector, q is a vector of displacements and the subscripts I and g rep­
resent the local and global degrees of freedom respectively. From 
the previous discussion it is apparent that there are likely to be far 
more local degrees of freedom than global degrees of freedom in 
the model. The large dimension of the local partitions typically 
renders a deterministic analysis of the system computationally 
impractical. It is therefore beneficial to reduce the local degrees of 
freedom from the above equation. It can be shown [6] that the per­
turbation to the mn’th entry of the global dynamic stiffness matrix 
is then given by
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where the summation i  is over all local component modes in the 
various fuzzy subsystems and where
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The term a ;- accounts for frequency effects and depends on the dis­
tribution of the local natural frequencies about the excitation fre­
quency. The term accounts for spatial effects and depends on the 
local and global mode shapes.

summation in equation (2) is replaced by an integration over vari­
ous regions of wavenumber space. The influence of the local 
modes on the global dynamic behavior can then be accounted for 
without having to explicitly calculate the mode shape and natural 
frequency associated with each local mode (resulting in a signifi­
cant reduction in computational expense). Asymptotic expressions 
are derived for a  and /3 as discussed in [1,6,7]. The overall 
approach remains computationally tractable yet captures the over­
all dynamic behavior of the system in a manner that is not possible 
using FE or SEA in isolation.
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4. Asymptotic fuzzy coupling

In principle, the previous expression could be evaluated exactly for 
any given system. This would require the ‘exact’ local natural fre­
quencies and modes shapes to be calculated in order to accurately 
determine a  and /3. There are a number of reasons why this 
approach is not beneficial. Firstly, there may be a significant num­
ber of local modes, which would render an exact deterministic cal­
culation computationally impractical. Secondly, an exact deter­
ministic calculation does not account for the effects of uncertainties 
in the local natural frequencies and mode shapes. The extra effort 
required to perform the deterministic calculation is therefore 
unlikely to result in an increase in the accuracy of the predictions.

One of the fundamental features of the Resound approach is that the
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