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1. Introduction
The «Oberst beam» is a classical method for the 
characterization of damping material based on a multilayer 
cantilever beam (base beam + one or two layers of other 
materials). As the base beam is made of a rigid and lightly 
damped material (steel, aluminum), the most critical aspect 
of this method is to properly excite the beam without adding 
weight or damping. So, exciting the beam with a shaker is 
not recommended because of the added mass. Alternative 
solutions are suggested in [1], electro-magnetic non
contacting transducer (tachometer pick-up, for example) can 
provide a good excitation but it is limited to ferro-magnetic 
materials. As aluminum and stainless-steel are widely used 
for the base beam, a small bits of magnetic material must be 
fastened adhesively to achieve specimen excitation. This 
method creates two other problems. The first one is the 
difficulty to properly measure the excitation force and the 
second one is the added damping due to the magnetic 
materials bits in the case of non-magnetic base beam. 
However, the measurement of the motion of the beam can be 
easily made using a non-contact transducer (a laser 
vibrometer for example).

2. Presentation of the method
2.1. Piezo electric actuators excitation
When two piezo-electric actuators are placed facing each 
other on both sides of a structure and cabled out of phase, 
they create a bending moment which is proportional to the 
applied voltage. This applied voltage can directly be used to 
calculate the velocity vs force transfer functions (FRF) used 
in the determination of modal parameters.
In the case of the Oberst beam, two piezo electric actuators 
have been glued near the root of the beam, where the 
displacements are small to lower energy loss due to added 
damping (Figure 1 ).

Fig. 1. Oberst beam excited using two piezo electric 
actuators

The beam used in this study has the following dimensions: 
length (/), 8” ; width (b ), Vi ” , thickness (h), 0.100” and the 
material is aluminum. The piezo electric actuators are %” 
long (/„„).

2.2. Added damping
The first problem was the matter of the added damping due 
to the gluing of the piezo electric actuators. As they are 
made out of ceramics, the intrinsic damping may be high. 
So, the overall damping of the beam has been measured 
before and after the gluing of the actuators (Table 1).

Mode
order

Frequency
(Hz)

Damping
without

actuators

Damping with 
actuators

1 47.1 0.09% 0.11%
2 295.8 0.14% 0.13%
3 827.2 0.18% 0.19%
4 1616.3 0.06% 0.13%
5 2668.5 0.07% 0.21%

Table 1. Base beam damping with and without piezo-electric 
actuators

Some damping has been added to the base beam for the 4lh 
and 5lh modes, but for the first three modes, there is no 
significant added damping. However, the overall damping 
remains low for all modes and should not interfere with the 
measurement of highly damped material.

2.3. Non covered length
A set of theoretical equations has been developed to 
determine the damping of each layer of a composite 
cantilever beam [2] under the assumption that the beam is 
entirely covered. In the present case it is not possible to 
cover the area occupied by the actuators with the material 
under test.
The structural damping is included in the complex part of the 
Young modulus and can be expressed as follow.

Ê  = £ - ( 1 +  j - T l )  (1)

The Euler-Bernouilli equation (2) for thin beam shows that 
the dissipated energy is included in the first term of and is 
proportional with both the fourth derivative of the 
displacement and the frequency. The fourth derivative o f  the 
displacement is directly equal to the displacement multiplied 
by a modal constant.

W
(x, t )+ p . A— T (x,t) = f ( x , t )  (2)

E I 'dx4 ™  dt2
An estimation of the error on the measurement of the 

damping may be done using two indicators. The first one (Ef) 
(3.1) is the ratio of the frequency shift o f modes between the 
entirely covered beam and the partially covered beam. The 

second one (£w) (3.2) is the ratio of the area under modal 
shape curve between 0 and I for the entirely covered beam 
and between lacl and / for the entirely covered beam.

£ f  = h _ ( y ~ v ^ / y ^ m a / ) 2 |  {3])
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Table 2 gives the estimated error using the beam described 
above and a damping material stuck on one side of the beam 
(density: 1740 kg/m3, thickness: 1mm).

Mode order Error due to 

frequency shift £f

Error due to non 

covered area £w

1 0.001% 0.09%
2 0.004% 0.47%
3 0.002% 1.19%
4 0.001% 2.12%
5 0.010% 3.20%

Table 2. Estimated error on damping

As expected, the error increases as the mode order increases 
only for the estimation of the non-dissipated energy in the 
root area, but the effect of frequency shift is negligible in the 
case of the tested material.
The maximum estimated error is about 3% on the fifth mode 
which is reasonable in the case of damping measurement or 
the modal parameter estimation.

3. Measurement of damping 
3.1. Composite damping
Some methods are available to measure the modal damping, 
the most used is the half-power bandwidth which can be 
very imprecise when experimental curves are directly used, 
curve fitting methods are preferred. In this study, a semi- 

direct algorithm is proposed. The calculation of F(a>), the 
beam displacement divided by the bending moment can be 
written as in equation (4).

( - O O j C O )

F ( û»  =  X ^ „ - £ --------------  (4)tf 0)-(On

K„ is the modal amplitude and is a function of force 
amplitude and the measurement point position. Near the ilh 
mode, the contribution of other modes can be neglected, the 
function F(co) and its first derivative can be written as in 
equations (5.1) and (5.2).

(—CO; It0)
F(œ) = K r -

(Û-CÙ.
(5.1)

^±-1—  ~  f (co) .(— --------—
dco ( 0 ( 0 -  <0,

) (5.2)

If  Am and Â,„ are the experimental values of FRF and first 
derivative respectively near the i'h mode, equations (5.1) and 
(5.2) can be combined and give equation (6.1) and (6.2).

.2

(6 .1)
Am.co- 1

c o - a ), 

-CO: 1(0
(6 .2)

Equation (6.1) and (6.2) give values than can be calculated 
from a certain number of frequency points near the 
resonance and averaged for a more precise estimation of 
modal parameters. Figure 2 represents the experimental and 
optimized curves for the two first modes of the damped 
beam.

Frequency (Hz)

Fig. 2. Experimental and optimized FRF fo r  the damped 
beam

This method always gives a good agreement as long as the 
experimental datas are properly measured.

3.2 Damping of tested material
Finally, the damping properties of the tested material have 
been directly calculated using formulas given in [1]. Table 3 
gives the results for the Young modulus and damping ratio 
calculated using composite damping and modal frequencies 
estimated using the method developed in this study.

Mode order Damping (%) Young Modulus 
(MPa)

1 83.3 660
2 97.9 930
3 91.3 1520
4 ASTM E756 validity criteria not passed 

(f</fn)2-( 1 +D.T)<] .015
Table 3. Estimated error on damping

4. Conclusion
The excitation of a cantilever beam using piezo electric 
actuator provides a good alternative to other excitation 
methods. The main advantage is its ease of settlement and of 
use, because it requires few adjustments and precaution. 
Moreover, the errors in the estimation of damping are small. 
The proposed algorithm for the calculation o f  modal 
parameters has been specially developed to use a more 
precise estimation of modal parameters than a simple half
power bandwidth method without using an advanced modal 
testing software.
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