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ABSTRACT

This paper deals with the classical problem of transmission-reflection and modes conversion due to the 
presence of acoustic liners in duct. The model consists of an infinite rectangular duct with an unlined and 
lined section. The approach is based on the modal calculation of the total acoustic sound power in a duct by 
the determination of the modal coefficients of the transmitted waves at the impedance discontinuity junc­
tion. For a given propagating mode (plane wave or higher order mode), incident from the rigid duct, the total 
sound power is calculated in the lined section by summing the acoustic power over all generated modes. The 
example studied here shows how the conversion affects the nature of the incident mode as a function of the 
admittance of the liner, frequency and mode number. It also allows for the quantification of the attenuation 
provided by an acoustic duct liner.

SOMMAIRE

Le recours a des revêtements de parois absorbants le long d’un conduit est un moyen naturel de réduire le 
bruit généré par des machines tournantes (turboréacteurs, circuits de ventilation, etc.). D’un point de vue 
scientifique, ce contexte pose plusieurs problèmes fondamentaux tant sur le plan de la compréhension des 
phénomènes que sur celui de leur modélisation. Il faut en effet pouvoir préciser les aspects liés à la propa­
gation guidée en présence de parois absorbantes. Cet article s’inscrit dans ce contexte et discute les effets 
liés à la conversion des modes qui est causée par la présence d’une discontinuité d’impédance en conduit. 
Pour ce faire, un model de conduit infini tridimensionnel a été étudié ou une partie est traitée par un revête­
ment acoustique. L’approche est basée sur un calcul modal de la puissance acoustique en conduit après 
détermination des coefficients modaux des modes transmis. Pour un mode de propagation donné (ondes 
planes ou modes supérieures), dans la section rigide du conduit, la puissance acoustique totale est calculée 
dans la section traitée en sommant les puissances des modes générés par la discontinuité d’impédance. 
L’exemple étudié ici montre comment cette conversion affecte la nature du mode incident en fonction de 
l’impédance du revêtement acoustique, de la fréquence et du mode. Il permet aussi de calculer l’atténuation 
apportée par un revêtement acoustique en conduit.

1. INTRODUCTION

The presence of acoustic treatments inside a duct induces a 
discontinuity problem which has been subject for many stud­
ies and researches in the 70’s. One of the first complete stud­
ies in the subject was undertaken by Zorumski [1] who 
solved the case of a lined duct with a known acoustic imped­
ance. Later on, Lansing et al. [2] studied the effect of the 
impedance of the duct walls on the transmission-reflection 
coefficients and on the radiation from the end of a baffled 
duct. Koch [3] used the Wiener-Hopf technique to study the 
effect of a finite layer of an acoustic material in a two dimen­
sional duct on the propagation of the acoustic modes. He 
found that the acoustic field had considerably changed

because of the conversion of the modes due to the presence 
of the liner. The above studies mainly dealt with semi-infi­
nite duct having a simple geometry. The difficulties arise 
when the geometry or the shape of the duct is no longer 
straight due to the analytical nature of these developments. 
The present study offers the advantage of considering both 
the plane waves and the higher modes that propagate in the 
duct. It also enables the calculation of the attenuation from 
the transmitted modal sound power of each generated mode 
at the impedance junction.

The model consists of an infinite rectangular duct with an 
unlined and lined section. This model was chosen, even 
though complicated due to the presence of the lined section, 
as it seems to provide more realistic results of the attenuation

3 - Vol. 30 No. 1 (2002) Canadian Acoustics /  Acoustique canadienne



provided by an acoustic liner, compared to the case of fully 
lined duct. The presence of a lined section in duct induces a 
discontinuity problem that is solved here. When a 
propagating acoustic duct mode arrives at an impedance 
discontinuity, it is partly transmitted into the lined section as 
a series of modes and partly reflected back.

The modal coefficients of the transmitted modes are 
determined by solving a set of modal equations grouped in a 
matrix form. The total modal sound power is calculated 
after the determination of the modal coefficients of the 
transmitted modes at the impedance discontinuity junction. 
For a given propagating mode (plane wave or higher order 
mode), incident from the rigid duct, the total sound power is 
calculated in the lined section by summing the acoustic 
power over all generated modes. The example studied here 
shows how the conversion affects the nature of the incident 
mode in function of the admittance of the liner, frequency 
and the mode number. It also allows quantifying the 
attenuation provided by an acoustic duct liner.

2. THEORY

A modal theory of propagation and attenuation of sound in a 
three-dimensional rectangular duct has been fully described 
in ref. [4]. The two first sections o f this paragraph give a 
summary of the sound propagation in unlined and lined duct 
with formulation to calculate the modal coefficients of the 
transmitted modes.

The duct system studied here is shown in Figure 1.

Figure 1: Three-dimensional infinite rectangular duct with an unlined 
and acoustically lined sections

The first section of the duct (section I) has rigid walls; the 
second section (section II) has all four walls treated with an 
acoustic liner with a known normalized acoustic admittance 
A. Let now consider an acoustic mode (m0,n0) incident 

from the rigid section I with a known amplitude Amon<} ■

When the acoustic mode arrives at the admittance 
discontinuity junction, between the lined and unlined 
sections of the duct, it will be partly transmitted into the

lined section as a series of modes with complex amplitudes 

Aqp and partly reflected back into the rigid section I with

complex modal amplitudes Bmn . The acoustic energy in the 

incident mode is thus partially transmitted into the lined 
section and partially reflected back. The modal coefficients 
of the transmitted waves are determined in section 2.2.

2.1 Propagation and attenuation In the duel

The acoustic field inside the duct is determined by solving 
the Helmholtz equation for the linear case and in the 
absence of sources and flow:

A P  + k 2 P - 0  (1)

where P  is the acoustic pressure, k=a>/c0 is the wave

number, a> the angular frequency and p  , c0 are the

ambient density and speed of sound respectively. The 
sidewall boundary conditions are:

c) P [O ; in section I
-, ■ • »  <2> d n  [ i k A P ;in sec tion II

at x  = ±lx/ 2 and y - ± l y /2

where A  is the normalized wall admittance of a “locally 
reacting” boundary and n is the outward normal.

The general solution for the pressure field in sections I and 
II of the duct is given by,

PI ( x ,y , z ) = A mono W<{Kmo y )e ~ iK™ z

+ V(Kmx M Kny)eiK- z
m—1 «=1

where,

*) = £(*„*) (4) 
'F ( K „  >0=  Z {K n >0

are the eigenfunctions. The term emt is implicit throughout 
the paper. A cosine function is used for the even modes and 
a sine function for the odd modes. The transverse wave 
numbers K m = ( m - l ) n / l x and Kn = (n - \ ) n I l y are

determined by the boundary conditions (2) and where lx 

and l y are the cross-sectional dimensions of the duct in the 

x  and y  direction respectively, and m , n are integers 

different from zero.

The axial wave number is given by the following dispersion 

equation K;m = k 2 -  (*£ + K ;  )

Canadian Acoustics /Acoustique canadienne Vol. 30 No. 1 (2002) - 4



a » c .o i K l  + K Î  =(oc„

The propagation of the waves in the axial direction is 

possible as long as the axial wave number K^nn > 0 . 

According to the dispersion equation, this is true for

Below this “cut-off’ frequency

0Jmn, the axial wave number K mn becomes a purely

imaginary number, and the propagation factors in equation 
— I K ~ I

(4) turn into e ' ' 1 ; which means the amplitudes of these 
modes decay exponentially with axial distance from the 
source: they are “cut-off’. Note that the mode (m0,n0) is 

just one particular mode over all possible (m ,n ) modes.

The general solution, for the pressure field in Section II, of 
Helmohltz equation (1) with boundary conditions (2) is 
(assuming that reflections from the end of the duct are 
neglected)

p„fcy.z)=X É  K p ^ x) *(*/> y ) e~ik'pZ (5)
q = 1 p = 1

where,

\<¥ (K q x ) = ^ { k q x)
i /s /V ( *  \ W
\ '¥(Kp y)  = ™[Kp y)

are the complexes eigenfunctions. The transverse wave 

numbers K q =fiq n l l x and K p = fip n l l y are determined 

by the boundary condition (2). The axial wave number is 

given by the dispersion equation: K qp- k 1 ~ { k q + k 2p ), 

where fLq and f ip are complex numbers. Note, in this case, 

the “cut-off notion” has no physical meaning. Assuming 

Kqp = { a ± i  j3)k , a  is the non-dimensional axial wave 

number and f3 is the damping factor of the mode. (3 

should be positive for a mode propagating in z> 0

direction. This means that we should look for a solution of 
the dispersion equation that provides attenuation.

Solving equation (5) by the method of separation of 
variables and imposing the boundary conditions (2) leads to 
the following characteristic equations

(Ke lk / 2 ) % ( £ e lt / 2 ) = ± i k A l k / 2 (7)

where the term in tangent is used for even modes and the 
one with cotangent for odd modes. The e and k indices 
represent q or p  and x or y respectively depending on the 

propagation direction.

The axial and transverse wave numbers were computed 
using a numerical scheme developed in ref. [2, 3], where the 
characteristic equation is transformed into a first order non­
linear differential equation. The differential equation is 
integrated using a Runge-Kutta algorithm with appropriate 
initial values. The transverse wave numbers then are used to 
compute the axial wave number using the dispersion 
equation.

2 .2  Calculation of the Transmitted Modal Coefficients

The acoustic pressure P and the acoustic velocity V are 
related by the momentum equation

V P = - i k  p c 0 V (8)

Using equations (3) and (5), the axial velocity in both 
sections (I and II) can be written as

V,',{x,y,z)=(l/kpc0)lAmono Kmon/ iK^ z ^(Kmo x ) ^  y)~X  5 X "  KmneiK^ 'V { K mx)'V{Kn y)\
[ m=\ n=\ J

V„ (x, y, z)= (1/* P c0 ) j r  ]T  Âqp k qp v { k q x) M k p y ) e-ri

(9)

q = 1 p =  I

The unknown amplitudes Aqp and Bmn in equations (3), Thus- bY substituting equations (3), (5) and (9) into these
two equations, and using the orthogonality properties of the

(5) and (9) are determined from a system of linear . ? °  °  c 4
. /  . , . , . . .  . . .  eigenfunctions, the following system for the transmitted

equations obtained by applying the continuities conditions: , , . . , . ,
,  ̂ , modal coefficients is obtained

the pressures and axial velocities in the two sections of the
duct must be equal at the junction z -  0 

P, (x, >’,0)= Pu (x, _y,()) and V, (x, y,0)=V„ (x, y,0)

*7* TT* * “ - \ ( 1 + 5m l ) ( 1 + 5n ,)\  \  A I I 4-K - 4  v Q ___ "d17/  J /  J QP m'a J n'p V s- ^  m'n' ) n m0n0 ^ ( 10)
q =  1 p = 1
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where <5 is the Kronecker delta and

i , n

h  = f  f  VF(A-, x ) vikj x)dx

X ->j I2 

' , /  2
j  'F(/T, >') y)dy

(11)

(12)

Equations (11) and (12) are solved analytically. The system 
indices, m and n , vary from 1 to M and 1 to N 
respectively, while q , p  vary from 1 to Q and 1 to P 

respectively after truncation. Therefore, we have [Q .P ]  

complex equations and [ Q . P ]  complex unknown which 

are the transmitted modal coefficients. M  and N are the 
total propagating modes in a duct following each transverse 
direction. The final linear system (10) takes the final matrix 
form [a  ].[X  ]= [b  ] 

where,
[ a ]  complex vector which contains the modal 

transmitted coefficients to be determined,
[ X ]  complex matrix which depends on the modes (m, n) 

and on the eigenvalues of the system,
[b] known vector which depends on the incident mode 

(m0,n0) and its amplitude A„,o„o .

The final matrix [x] is square and the dimension of the 

system is multiplied by 2 to account for the complex 
numbers, therefore the final matrix dimensions are 
[ 2 .Q .P ,2 .Q .P ] .  Further, the truncation is performed at 

Q = M + 2 and P  = N + 2 .  This truncation was checked 

when calculating all possible transmitted and reflected 
coefficients at the discontinuity junction for any incident 
mode (m0,n0). The determination of the modal coefficients 

and sound powers of the transmitted modes will show that 
it’s worthless and time consuming to consider a number of 
modes (generated in section II) greater than the limit chosen 
above. An LU decomposition algorithm with matrix 
inversion was used to solve the matrix system.

2.3 Sound power calculation

The modal axial acoustic velocity of a propagating mode, 
following z> 0  direction, is given by:

1 K,„

P c o .
and the modal acoustic intensity is given by,

/ = p  V =
m n  1 m n mn Re \p V*  }C m n m n  J

(13)

(14)

where Vmn denotes the complex conjugate of Vmn .

The sound power is obtained by integration of the intensity 
over the duct section (ref. [5, 6]):

n
- 1 1

1 dS (15)

where S is the duct cross section area.

Rigid duct case
For an incident mode with a given index (m ,n), Pmn is 

given by the solution of the wave equation. The modal 
acoustic sound power in a rigid duct is:

(16)
1j  ̂ 1

f  1 l U |2 f M
2 j1 PC° J

y k j

with K mn real, S the cross section area of the duct, and

£J >
• ; t f  > >1

Lined duct case
The modal acoustic sound power is obtained in 

similar way as for the rigid duct case. The modal sound 
power, for a given generated mode in section II, is given 
by:

with

1
p c 0

-IJ2

ly/2

and i  P—

-/>/ 2

( 18)

(19)

The integrals are calculated analytically by using the 
trigonometry functions’ properties as follows:

f  (20) 
J smV ’ 2 [ Im(A^) Re(A7) J
ĵr/ 2

The total transmitted sound power in region II is the sum of 
the modal acoustic power of each generated mode, and is 
given by:

(21)
<7=1 p = 1

Finally, the expression of the total attenuation provided by 
the acoustic treatment over a certain length L is given by:

'  Q  P

S z n w
9 = 1  p= l /

10 /  Q  P

Ë É n »
<7=1 p=\

An"(cÆ)=ioiog (22)
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3. APPLICATION

An example of application, which deals with noise 
suppression from a turboshaft engine inlet, is discussed in 
this section. The aim is to attenuate the high frequency 
noise, generated by the compressor (fundamental mode of 
blade passing frequency), by lining the inlet with a 
composite material. The frequency of concerns is situated 
between 8 and 10 kHz. The liner consists of a solid 
backplate and a layer of feltmetal material separated by 
honeycomb structures. The normalized acoustic admittance 
of the used liner is referred to R l. It has been determined 
experimentally by using an impedance tube measurement.

Results from a two-dimensional case is shown in Figure 3 
and Figure 4 where the total transmitted non-dimensional 

sound power ( n ^ / n , )  for the least attenuated incident

mode (fundamental mode) is plotted versus the frequency 
with a 500 Hz step for a weak and strong constant 
normalized admittance values A = (.l,-t-.l) and 

A = (l., + . l) respectively, and at different location z = 0 m 

(at the discontinuity junction), z = 0.1 m and z = 0.2 m. 

The duct width is 0.2 m, M = 12 at / max = 10 kHz , and the 

system truncated at Q = 20 .

For a weak admittance value, the graph in Figure 3 at 
z = 0.1 m, shows that the transmission is complete with 

almost no reflections. However for the same mode, Figure 
4 shows a much stronger reflection at the discontinuity 
junction. The graphs of this figure exhibit a wavy behavior, 
especially at z =  0 m, which due to the successive 

contribution of the reflected modes occurring at the 
discontinuity junction while the frequency increases.
The results from an incident mode 3 are shown in Figure 4 
for a strong constant normalized admittance value.
It is clear that the sound power ratio increases with the 
frequency at a constant admittance value. This 
representation also allows to globally quantifying the 
attenuation provided by the liner.

A three-dimensional square duct of 0.1 m by 0.1 m cross 
section was considered in the calculation of the total 

transmitted power (fl ' ' / n m0n0 ). Figure 5 and Figure 6 

show the calculation results for modes (1,1) and (2,2) for 
different admittances (constant weak and strong admittance 
value and a variable admittance R l). The same behaviors as 
observed in the two-dimensional case described above 
occur here.

Finally, the graphs of Figure 7 and Figure 8 show the total 
modal attenuation in dB, provided by the liner, versus the

lined length for different incident modes and at K I  = 29.3. 

The model duct had 0.1 m by 0.1 m cross section, and the 
matrix system has been truncated at Q = P = 20 for the 

calculation of the transmitted coefficients, that means, 
almost a double number of modes in the lined section 
(section II) than the propagating modes in section I was 
considered at a maximum frequency of 10 kHz where 
M = N = 12.
It can be seen that liner with normalized admittance Rl 
provides better attenuation in the frequency range of 
concerns.

4. CONCLUSION

The objective is to provide formulations that allow the 
quantification of the attenuation provided by a liner that has 
a known acoustic admittance. The modal analytical 
approach described here permits an understanding of the 
modes conversion phenomena. The total transmitted sound 
power has been calculated for different wall admittance 
values representing a weak, strong and optimal “R l” 
attenuation at different locations.
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Figure 2: Total transmitted to incident power ratio ( l l f  / l l m0) as function o f frequency fo r incident mode 1 and a
normalized acoustic admittance A = (. 1, + . 1)

Figure 3: Total transmitted to incident po^ver ratio (nf /nm0) as function offrequency fo r incident mode 1 and a

normalized acoustic admittance A = ( 1 + .  1)

Figure 4: Total transnütted to incident power ratio (nf /nm0) as function offrequency fo r  incident mode 3 and a

normalized acoustic admittance A = ( 1 + .  1)
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Figure 5: Total transmitted to incident power ratio (nf /llm0„0) as function offrequency fo r incident mode (1,1) and

different normalized acoustic admittance values.

Figure 6: Total transmitted to incident power ratio (nf /rim0n0) as function offrequency fo r incident mode (2, 2) and

different normalized acoustic admittance values.
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Figure 7: Modal attenuation ( n f  / l l ; ) as function o f liner length fo r  different incidents modes and a normalized

acoustic admittance A = (l., 4- . l)
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Figure 8: Modal attenuation ( n f  /n ,- ) in function o f the distance fo r  different incidents modes and a normalized

acoustic admittance A =R\
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