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ABSTRACT

Categorization of sound level requires that the subject classify the intensity of stimulus tones into appropri
ate response categories. Intensities are selected at random from a fixed stimulus range and stimulus- 
response pairs are tabulated into a stimulus-response matrix. “Anchor” or edge effects are well-recognized 
phenomena by which tones selected from the extremities of the stimulus range are classified with greater 
accuracy than tones in mid-range. Observation reveals that data in the center rows of a matrix follow a typ
ical normal error distribution, while data in extreme rows follow a heavily skewed distribution with small
er variance. We propose that the distribution of responses along all rows of the stimulus-response matrix is 
described by a single, underlying normal density of constant variance. We develop the mathematical theo

ry for extracting this constant underlying variance, o  from an experimental “parent” matrix. A set con

sisting of all possible matrices (including the parent matrix) with core variance, and containing the usual 
anchor phenomena, can then be generated at will. Using this core variance, we derive an expression for the 
transmitted information, It, that comprises a non-anchor and anchor contribution, whereby the size of the

anchor effect may be quantified. Essentially, we provide a method for removing anchor effects and reveal
ing the single core variance that represents, by hypothesis, the stimulus-response matrix.

SOMMAIRE
Pour catégoriser le niveau sonore, le participant doit classer l ’intensité des stimuli sonores selon des caté
gories de réponse adaptées. Les intensités sont choisies au hasard dans une étendue prédéterminée de stim
uli et les couples stimulus-réponse sont reportés dans une matrice stimulus-réponse. Les « effets des points 
d’ancrage » sont des phénomènes connus selon lesquels les fréquences sonores appartenant aux extrémités 
de l’étendue de stimuli sont classées avec plus de précision que celles du milieu de l’étendue. Les données 
des rangées au milieu de la matrice sont réparties selon une courbe de Gauss classique, tandis que les don
nées des rangées aux extrémités forment une distribution très asymétrique dont la variance est moins 
prononcée. Nous proposons que la répartition des réponses dans toutes les rangées de la matrice stimulus- 
réponse s’explique par la présence d’une courbe normale à variance constante. Nous élaborons la théorie

mathématique visant à extraire cette variance constante sous-jacente, o^, d’une matrice « parentale » 
expérimentale. Une série composée de toutes les matrices possibles (y compris la matrice parentale), se car

actérisant par une variance fondamentale, O^, et contenant les phénomènes classiques d ’ancrage, peut alors 
être générée à volonté. En utilisant cette variance fondamentale, nous dérivons une expression pour l’in
formation transmise, / t, qui comprend un volet, tant ancré que non ancré, sur la base duquel l’ampleur de

l’effet d ’ancrage est quantifiable. Essentiellement, nous présentons une méthode visant à éliminer les effets 
d’ancrage et à révéler la variance fondamentale qui représente, selon l ’hypothèse posée, la matrice stimu
lus-réponse.

1. INTRODUCTION

In tests of categorization of sound level, subjects are 
required to classify the intensity of tones into specific cate
gories. For example, consider an experiment where a subject 
is presented with a tone, the intensity of which is selected 
randomly from a fixed range of 1 to 90 decibels (dB). This 
intensity range can be subdivided into 9 large categories of

10 dB width where ‘category 1’ equals 1-10 dB, ‘category 2’ 
equals 11-20 dB, and so on; or 30 small categories of 3 dB 
width where ‘category 1’ equals 1-3 dB, ‘category 2’ equals 
4-6 dB, and so on. The number of categories used depends 
only on the requirements of the experimenter. The subject’s 
task is to estimate the category to which the stimulus belongs 
to the best of his/her ability. More generally, the intensity of 
tones are randomly selected by the experimenter, typically 
using a uniform distribution, from a discrete set of stimulus
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categories, X  -  [ X j ,  X jn}. Observers are required to

classify each stimulus using a corresponding set of response 

categories, Y -  [Y j ,  Ym }. Results are tabulated in the

form of a stimulus-response or “confusion” matrix such that 

the element n j^  represents the number of times stimulus X j

was identified as response Y^

Illustrated in Figure 1 is a 10 x 10 stimulus-response 

matrix obtained from an experiment on stimulus categoriza

tion conducted in our laboratory using stimulus tones fixed 

at 1000 Hz and varying in intensity from 1 to 10 dB Hearing 

Level, i.e. decibels above a population threshold (dB HL). 

Each stimulus and response category is of width 1 dB. For 

example ‘ÇX5 , Y 4 ) =  14’ means that the subject identified a

5 dB stimulus tone as a 4 dB tone 14 times out of the 45 

times that this stimulus tone was given.

We consider here tones o f  a fixed frequency of 1000 Hz 
that vary only in intensity, from which we shall calculate 
Shannon’s mutual or transmitted information, I p  by the

methods of Garner and Hake (1951).

Adequate estimates of I t require on the order of 10,000

trials, which, in the past has required pooling o f  data from 

several subjects. We have avoided pooling by extending 
data from a given participant using computer simulation. 

Wong and Norwich (1997) extended the work of Houtsma 
(1983) in developing such a simulator that permits estima

tion of I f  from limited data. Simulation is made possible

because the distribution o f  responses in most rows o f  a con
fusion matrix has been observed to be Gaussian, with a con

stant row variance.

The simulator operates in the following way. Using a

limited set o f measured data, the row variance, a  is esti
mated. Responses that are normally distributed with the

measured variance, a  are then computer generated by 

Monte Carlo techniques. The ‘simulated’ stimulus- 

response pair, (X j, Yk ), can then be compiled into a stimu

lus-response matrix and I t can be measured. Continuing

this process for an arbitrarily large number o f trials pro

vides an estimate o f  I t  that is based on a simulated stimu-

lus-response matrix free from any small sample bias. The

value o f  cr utilized by the simulator is estimated from a 

limited number of experimental trials conducted on a single

subject. Converging estimates of G  ̂  require far fewer 

experimental trials than are required for overcoming the 
small sample bias in Ip  By way of illustration, the largest

stimulus-response matrix obtained in our experiments is a 

90 x 90 matrix corresponding to a stimulus range spanning 
1 -  90 dB HL. Using our simulator it is easily verified 

that, whereas converging estimates of I f  require on the

order of 50,000 simulated trials, less than 500 trials are

required to obtain converging estimates of o ~ .

A drawback to the simulation approach as we had 
employed it is that apparent anchor effects were accounted 

for in only preliminary fashion. Although an observer’s 

responses to the mid-range intensities may follow normal 
distributions o f  common variance, the response distribu

tions surrounding the more extreme intensities display 
heavy skewing or “anchoring” . That is, participants per

form better in resolving intensities located at the extremes

Y, y2 Ys y4 Ys y6 Y7 Is y 9 Yio
yçtotal

Xi 20 7 12 9 4 1 0 0 0 0 53

x2 10 10 15 10 10 1 1 0 0 0 57

x3 14 11 7 10 6 1 2 1 0 0 52

x4 1 5 14 16 9 2 4 0 0 0 51

x5 4 1 4 14 11 8 2 1 0 0 45

x6 0 0 5 8 14 12 10 6 0 1 56

x 7 0 0 0 2 8 7 8 14 7 1 47

Xs 0 0 0 1 2 7 17 9 9 4 49

x9 0 0 0 0 3 4 11 18 11 4 51

X,0 0 0 0 1 1 0 2 4 18 13 39

V total 
Ik 49 34 57 71 68 43 57 53 45 23 500

Figure 1: A 10 x 10 stimulus-response matrix conducted over a stimulus range of 1 - 10 dB HL. Note normal distri
bution about main diagonal across middle rows.
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of the stimulus range, as if their responses were intrinsical
ly anchored.

This can be seen in Figure 1, especially along row 1 and 
row 10 where the subject’s responses are heavily skewed, or 
anchored, to the sides of the matrix. Please notice that 
responses along the middle rows tend to follow a normal dis
tribution about the main diagonal, while responses along the 
extreme rows are skewed due to anchor effects. Since the 
reduced variances of these extreme distributions would be 
incorporated into a sample estimate for a, the accuracy of the 
resulting information estimates would be affected. We pro
pose that one can remove the skewing and assign a common 
normal distribution to all the rows.

In this paper we are interested in developing a means of

estimating a  ^ that is not affected by the anchoring process.

A model is developed where (7 the ‘anchor-free’ variance 
underlying the stimulus-response matrix, is extracted from a

9measure of the average row variance of this matrix, O ej^,

which contains the anchor effect. This model is used to 
obtain more accurate estimates of the transmitted informa
tion as measured from the stimulus-response matrix. Finally, 
an expression for the transmitted information is derived that 
decomposes into a sum of two parts, a non-anchor and an 
anchor contribution, whereby the magnitude of the anchor 
effect may be measured.

2. A CONSTANT VARIANCE (CV) M ODEL  
FOR THE STIM ULUS-RESPONSE MATRIX

It is assumed that there is a single, unique normal distri
bution governing responses in each row of the matrix, which

is perturbed by the “anchor” process. Let c  z be the “con- 

stant variance” of this normal distribution and let o rep

resent the arithmetic mean of variances across all rows of the 
stimulus-response matrix, including the extreme distribu
tions. If a  underlies all responses of the stimulus-response

matrix, it should be possible to relate o  ej f t0

9Finding a relationship between a  and c  requires a

model of the row distributions. For ease in calculation, the 
set of discrete responses, Y, will be represented by the con
tinuous random variable, y, and the set of discrete stimuli, X, 
will be represented by the continuous random variable, x. 
One should note the necessary correction of the form y =

-  0.5 and x = Xj -  0.5 when transforming from the continu

ous domain to the discrete domain (cf Snedecor, 1980, 
p i 18).

We represent distributions along any row of the stimulus- 
response matrix as a conditional probability of response y 
given a value of x. This distribution, p*(ylx) is a continuous

9
normal distribution with variance C :

p \ y  lx) =
V i

rexp (1)

p (y\x) is, however, unbounded in y such that y e  (- °°).
To conform to the boundaries of the matrix more realis

tically, one can confine p*(y\x) to the width of the matrix; 
namely, define y such that y s  [0, R] (which is the continu
ous analogue of Y e  {1, 2, ..., R}). If we now integrate over 
the space of y,

\ p \ y \ x ) d y  = f 
o oV27rcr

rexp
1 f  y — x

2 (7
dy

rR - x ' ( x j
erf [ c r V 2  J + erf U æ JJ~  2 

= C(x).

Dividing p  (ylx) by C(x) renormalizes Eq. (1) over the 
range, giving an expression, p(y\x), for the row distributions 
as follows:

1

C (x )S .
rexp

'.KG'

1

C(x) =
J  R - x ) X l+ erf [ c r V l J J

(2)

x , y e  [0,/?]

Figure 2: A continuous normal distribution, whose mean 
lies at the center of the second column of a 10 x 10 matrix, 
is renormalized over the continuous range [0,10] dB.
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This procedure is outlined graphically in Figure 2 where 
we consider the second row (X j ) of a typical 10 x 10 confu

sion matrix over a range 1 -  10 dB. The dashed curve rep

resents a continuous, normal distribution, p*(y\X2 ), of vari

ance a  ^ centered over the second column (y = 1.5). The 
solid curve is the distribution, p(y\X2 ), that results from 

jjj

renormalizing p  (ylX^) over a fixed range [0, 10] dB. This 

range is the continuous analogue of the discrete categorical 

range {1, 10). As a result of confining p*(y\X2 ) to the 

stimulus range, p(y IX2 ) is skewed and of smaller variance.

The renormalized distribution, p(y\x), is now sufficient to 
describe the distribution of responses along the rows of a 
stimulus-response matrix as seen in Figure 3. The resulting 
set of distributions are all related to the same underlying nor-

mal distribution of constant variance, a  . We observe that 
the distributions skew as the mean approaches the edges.

Renormalizing p*(y\x) (unskewed) over the range and 
shifting the means appropriately gives rise to the set of

skewed distributions, p{)’\Xj) (i = ). Since cr^ is the 

variance belonging to p*(y\x) and e r ^ - i s  the average vari

ance of the p(ylA';-)’s, we should expect that o ^ ej^<  o ^ .

To evaluate u  ^ as a function of a  ^eff’ we ^ rst evaluate 

the variance of each row. That is,

var[/>(y I x ) ]=  ( y 2) ~ ( y ) 2 

where (y) and (3' 2 ) are the first and second moments of

Response Range (dB)
Figure 3: The process of renormalizing p  ' (y\Xj), as dis

played in Figure 2, for all stimulus categories 
Xj ( j -  1 , 1 0 )  over the fixed range [0,10] dB.

p(y\x) respectively. We have defined as the arithmetic 

mean of the row variances, or

1 R
<y]B = — f var[p(;y I * ) ]& .

0

In the appendix, part I, it is shown that for R »  o,

_ 2 __ 2 4 3

Eq. (3) allows us to convert the average variance of the 
skewed distributions in the stimulus-response matrix to the 
variance of the unskewed normal distribution that underlies 
responses. That is, Eq. (3) can be used to extract the under-

9 9lying variance, a  , from the average row variance, (7 ett,

measured from experiment. We observe that a ^ ej^<  a as 

expected.

3. APPLICATION OF CV MODEL TO 
EXPERIMENT

We shall now simulate the matrix in Figure 1 using Eq. 
(3). Measuring the average row variance from the matrix

gives P ef f -  2.21. The notation P  ef f  is used to describe the

sample mean row variance corresponding to & ej f  t l̂e actu_

al mean row variance. Similarly, p- is the sample estimate 

corresponding to cr^. Substituting ( P eff> P )  f°r

into Eq. (3) and solving gives P  = 3.07. This value is now 
used as an input into the simulator.

In Figure 4, the dashed curve depicts information calcu
lated progressively from the stimulus-response matrix dis
played in Figure 1 as the matrix fills by increasing numbers 
of experimental trials. The solid curve represents informa
tion calculated progressively from an average of 20 Monte 
Carlo simulations. Two types of input were used for simu
lation. The first was the arithmetic mean row variance cal-

culated directly from the matrix in Figure 1; i.e. s e f f= ^-21

(top panel). The second was the corrected variance obtained

by substituting s^ê ( f o r  <Peff)  into Eq. (3) to give s^ = 3.07

(bottom panel). Notice how, after 500 trials, the simulator

that implements Eq. (3) to obtain s^ = 3.07 as an input con
forms more closely to the experimental curve, thus improv
ing upon the method of overcoming small sample bias devel
oped by Wong and Norwich (1997). Furthermore, the close 
correspondence between experiment and simulation in

Figure 4 using the anchor free estimate of attests to the 
validity of the constant variance assumption.

The procedure in our example can be generalized. For
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N u m b e r  o f T rials

Figure 4: Comparison of two inputs for simulation, 
upper and lower panels. Information calculated from 

experiment (dashed curve) and simulation (solid curve) 
as stimulus-response matrix fills by increasing number 

of trials.

any experimentally determined stimulus-response matrix,

measure the average row sample variance, P eff- “Unwrap”

this measure (or “weigh” the anchor) using Eq. (3) to obtain

the anchor-free estimate, s>, of the response error underlying

the matrix. Simulate using to obtain an estimate for infor
mation, I(N), to any desired number of trials.

One should note that averaging simulations gives a 
stronger estimate of the expected value of information (I(N)) 
corresponding to the underlying response error, o. I(N) 
resulting from a single simulation can be considered as a 
single experiment. The corresponding expectation, (I(N)) 
would represent a long term average over many experiments 
and has a one-to-one correspondence with o. The character
istic shape of (I(N)) as depicted in Figure 4 has been dis
cussed by Norwich, Wong and Sagi (1998). One should note 
that for N —> oo, l(N) —» It. That is, after a sufficient num

ber of trials, the small sample bias in the information esti
mate, I(N), is overcome and one obtains the information 

transmitted to the subject, It.

4. BYPASSING SIMULATION BY APPROX
IMATION: THE ASYMPTOTIC INFOR
MATION

As mentioned, the original purpose for simulation was to 
overcome the small sample bias in calculated information, 
I(N), which approaches transmitted information, It, only

after a significant number of trials. One of the advantages of 
the CV model is that it provides a trial-independent, a priori 
description of the row distributions found in the stimulus- 
response matrix; namely, p(y\x), which can be substituted 
into the equation that describes It (Garner and Hake, 1951).

I, = I ( Y \ X )  = H ( Y ) - H ( Y \ X )
R R R

= ~ £ i P ( y k  ) i° s  p(3't ) +  p ( x j ) p ( y * I * j ) l o g p ( y k I x j )  (4) 
* = i j = i  * = i

This equation is independent of N  and describes It exact

ly, but is too difficult to handle analytically. We can, how
ever make some approximations. First, let us transfer from 
the discrete realm to the continuous, thereby converting 
sums into integrals. This procedure is analogous to consid
ering infinitesimally small category widths. The increase in 
It due to an increasing number of categories is a well known

phenomenon (Miller, 1956). This increase, however, is 
bounded. That is, for a large enough number of categories, 
It approaches a constant value, i.e. the channel capacity for

that stimulus range.
By way of example, the channel capacity for a stimulus 

range spanning 90 dB is reached after about 30 categories, 
i.e. each category having a width of 3 dB. Similarly, the 
channel capacity for a stimulus range spanning 30 dB is 
reached after about 10 categories. Of course, the channel 
capacity for the 90 dB stimulus range is larger than that for 
the stimulus range of 30 dB. In our experiments, we use cat
egories of 1 dB width, which is the same as requiring that the 
number of categories equals the discrete stimulus range, i.e. 
m = R dB. Since, using this many categories, the transmit
ted information has reached channel capacity, we therefore 
make the conjecture that increasing the number of categories 
from m -  R dB to m —> in Eq. (4) has little or no effect on 
It (Sagi, Wong and Norwich, 2001).

Hence,
R RR

-J p {y ) log p{y)dy + J J p(x)p(y  I x)log p(y  I x)dydx/ . = -

Symmetry in a stimulus-response matrix would imply 
that p(y) = p{x) = 1/R:

j  R R

I, = log R + — j  J p (y  I x ) log p (y  I x)dydx
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Using the expression for the row distributions in Eq. (2), 
the integral of the rightmost term can be expanded as shown 
in the appendix, part II, The transmitted information in nat
ural units now becomes

2 C(x) dx1
ix

The rightmost term can be defined as follows:

1 R(
<S>(R,a) = -----J  In C(x) +

R - x ^c w - I erf

a 1 d 2C(x) 

2 C(x) dx2 

V

dx

G
+ erf\

x

GV2

(5)

and the information transmitted to the subject in natural units 
can be expressed as

/, = \ n R - ^ \ n ( 2n e a 2y O ( R , ( 7 ) (6)

Please note that in Eq. (5), <£>(/?, cr) > 0 and must be evalu
ated numerically, but vanishes for large R. One can consid
er (\HR, o) as an information gain due to the presence of 
edges. Notice how, in this model, no assumptions were 
necessary regarding mechanisms for anchoring. Instead, 
the anchor effect comes about naturally from the boundary 
condition y  e  [0, /?].

If we drop <3>(/?, a), Eq. (6) becomes

I. =  In R  —- I n ( in e o 2 ) (7)

This expression compares well with that derived in Wong 
and Norwich (1997) where transmitted information was 
approximated without the anchor effect. A similar expres
sion was also suggested by Baird (1984). Hence, it is possi
ble to describe It in terms of a non-anchor contribution and

an anchor contribution, or

/ ,  = / ; + < & ( * ,  <r) (8)

Data in Table 1 demonstrate the correspondence between 
the transmitted information, Ip calculated from Eq. (6); the

transmitted information independent of anchor effects, 7f

calculated from Eq. (7); and Itslm, the value of transmitted

information obtained from the simulator. All information 
measurements were made in natural units (n.u.). For esti
mates of information using the simulator, 100,000 trials were 
used to overcome any small sample bias. Also, 20 runs are 
averaged for each simulation to ensure the simulator approx

imates (I(N)). All information measures make use of the 
subject’s estimated error of response, s (for cr), for a given 
range. This estimate was “unwrapped” from sej j  (for

obtained experimentally from subject “W” over several 
ranges, using Equation (3). The information gain due to the 
presence of edges is expressed in terms of %(t>, defined 
below in Eq. (9).

Please notice in Table 1 the correspondence between It

and Itsun. That is, Eq. (6) is sufficient to describe the results

of simulations over large trials. Furthermore, the term 
<E>(i?, a) allows us to quantify the added contribution of edge 
effects to It. Hereafter, all estimates of It will be obtained

from Eq. (6).

5. EXPERIMENTS ON STIMULUS CATE
GORIZATION

Experiments on categorization of intensities of auditory 
stimuli were conducted over several ranges of stimuli 
(Norwich et al, 1998). Stimulus tones of 1000 Hz and 1.5 s 
duration were presented binaurally through headphones to 5 
participants. Each categorization experiment was conducted 
over a fixed stimulus range using 500 experimental trials. 
For each stimulus range, the number of categories equals the

discrete range, or m = R dB, and s ef f  was measured from

the resulting stimulus-response matrix. For each participant,

p- was obtained from ^  eff using Eq. (3) above.

Subsequently, was used to calculate It and <5 for each sub

ject and each stimulus range using Eq. (6). The results are 
compiled in Table 2. Transmitted information (7r) increases

with increasing stimulus range in accordance with the find
ings of previous investigators (Norwich et. al., 1998). Using 
Eq. (6) and Eq. (7) of the constant variance model, we are 
now able to quantify the percent contribution of the edge 
effect to the transmitted information, Ip expressed as %4\

calculated from

I  - / *
% O  =  1 0 0 - '  ' (9)

I,

We observe that the edge or anchor effects predominate 
at smaller ranges and decrease with increasing stimulus 
range.

6. DISCUSSION AND CONCLUSION

We have presented a means by which anchor effects can 
be removed from a stimulus-response matrix. A constant 
variance model of the stimulus-response matrix was utilized. 
The primary assumption of the model is that the distribution
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R ange  (dB) Seff (dB) s (dB) I tsun (n.u.) I, (n.u.) It (n.u.) %<D

1 -10 1.49 1.75 0.557 0.563 0.324 42

1- 30 2.50 2.71 1.110 1.107 0.985 11

1- 50 3.72 3.99 1.224 1.215 1.109 8.7

1- 70 4.41 4.66 1.391 1.376 1.291 6.2

1 - 90 5.58 5.90 1.427 1.391 1.306 6.1

Table 1: Data from subject “W”. sej j obtained from experiment over given range, s obtained from sejj- using Eq.

(3). .v used to measure / fvim from simulation (see text), It  from Eq. (6), and It from Eq. (7). %<& from Eq. (9).

Information in natural units (n.u.).

Range Subject “C” Subject “E” Subject “J ” Subject “R” Subject “W ”

(dB) It (n.u.) %o It (n.u.) %o It (n.u.) %o It (n.u.) %o I, (n.u.) %o

1-10 0.841 20 0.632 35 0.595 39 0.790 22 0.563 42

1-30 1.086 11 1.125 10 0.979 14 1.208 8.7 1.107 11

1-50 - - 1.226 8.5 1.049 12 - - 1.215 8.7

1-70 - - - - 1.232 8.4 - - 1.376 6.2

1-90 1.252 8.1 1.432 8.1 1.482 > 5:2 1.499 5.0 1.391 6.1

Table 2: Percent contribution of the edge effect, % 0 (Eq. (9)), to the transmitted information, If (Eq. (6)) in natural 

units (n.u.), measured over several stimulus ranges for 5 subjects.

of responses along each row of the matrix, including the simulation. Using a single input value for the subject’s 

extreme intensities of the stimulus range, can be described response error, o  pseudo-stimulus-response pairs are gen- 

by a  single underlying normal density of constant variance, erated for an arbitrarily large number of trials and the résult

er 2. ing information is calculated from the simulated stimulus- 

A lthough stimulus categorization experiments were per- response matrix. In this way, small sample bias is minimized 

formed with a limited number of experimental trials, accu- or eliminated.
rate estim ates o f  I t are obtainable for each participant from The single input value, cr, can be measured from the

the resulting stimulus-response matrix through Monte Carlo experimentally obtained stimulus-response matrix in the

form of an average row variance, o  ^ efj- This measure is,

however, distorted or anchored by edge effects due to stim

uli at the extremities of the stimulus range. The constant

(7 e f f  variance m odel removes the anchor, replacing a  by the

more accurate <7 ^. This process is described qualitatively in 

Figure 5 where the process of “weighing the anchor in stim

ulus categorization” is summarized. Consider an experiment 

in stimulus categorization conducted over a sufficiently large 

number o f trials. We can measure a subject’s response error 

by taking an arithmetic mean of the variances across all the

rows o f the resulting matrix, to estimate a  e ff. This m eas

ure is anchored due to stimuli at the extremities o f the stim

ulus range. The anchor effect can be rem oved (or

“weighed” ) by substituting o ^ -ej y  m to  Eq. (3) o f  the constant

variance model to obtain an estimator of cr . If  we now uti

lize cr ^ as input for simulation, we find, after a sufficiently

Canadian Acoustics /Acoustique canadienne
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o 2 EXPERIMENT ___ ►  a 2gff

Figure 5: Using <J2ejy  measured from experiment, the

CV model (Eq. 3) provides us with (J2 (anchor-free) as 
an input to the simulator, in turn, giving rise to the

same G 2ej j  i\s an output: a kind of “Koch cycle”.
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large number of simulated trials, that the mean row variance 
of the resulting simulated stimulus-response matrix is equal

to a  , the value originally measured from experiment.

Inputting a  ^ into the simulator gives rise to c  ^ef f  m  ^ie 

resulting simulated stimulus-response matrix. The constant 

variance model lets us estimate the value of a  ^ that origi

nally gave rise to

The process of beginning with o  ^ ef f  from experiments

on the “outside world” , passing it through the model and

simulator, and then retrieving a  ^ ef f  back into the outside

world, is strangely reminiscent of the postulates (criteria) of 
microbiologist Robert Koch (see, for example, Dorland’s

Illustrated Medical Dictionary, 281*1 Edition). That is, our

ability to extract an otherwise hidden parameter, i.e. O 
depends on the extent to which we are able to reproduce the

observable, o  ^e

Our ability to recreate the experimentally observed stim
ulus-response matrix is best demonstrated using the calculat

ed information, /(TV), as in Figure 4. Using o  ^ that is free 
from the anchor effect as the single input parameter to the 
simulator, both the small sample bias in I(N) and its subse
quent approach to It are accounted for. In this way, we have

a theoretical ‘handle’ on what may not be just a statistical 
bias, but a description of the progressive acquisition of audi
tory information.

Furthermore, confining the underlying normal distribu

tion of constant variance, a ^ ,  to the stimulus range and then 
renormalizing this distribution over that range provides us 
with an a priori description of the probability distribution for 
any given row. This leads to a trial-independent expression 
for the transmitted information, obviating the need for simu
lation. The expression for It decomposes into a sum of two

components, the first independent of, and the second 
dependent upon the anchor effects. Hence, we are truly able 
to “weigh” the contribution of the anchor effect to the trans
mitted information that arises somewhat as an artifact from 
the boundary conditions of the experiment.

The primary utility of the constant variance assumption 
is that an experiment on categorization of sound level over a 
fixed stimulus range becomes completely determined by a

single parameter, i.e. 0 ~ .  As demonstrated in Table 2, u ~  
increases as the stimulus range is increased. Recently, we

have demonstrated that the rate of increase of cr^ with stim
ulus range mirrors the rate of increase of psychophysical

loudness with stimulus intensity. In this way, o  ^ becomes a 
rather ‘objective’ representation of loudness (Norwich and 
Sagi, 2002, in press).

Although the focus of our experiments was on catego
rization, or absolute identification of sound level, the theory

outlined herein could be applied to categorization, or 
absolute identification of other dimensions such as pitch, 
spatial perception, etc.
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APPENDIX

■2 —as a Function of

To obtain c  ̂ ef f as a function of cr 2, we require the 

first two moments of p(y\x)\ namely (y) and (y^).

R

(y) = J yp(y i *)4y

- Jo C(x)V2;
• \ : :

JTfT"

Employing the following substitution: 

t  = ^  

y = V ï at + x
we obtain

v a r [ p ( j U ) ]  =  ( y 2) - ( j ) 2

= 2 o  ^ t 2) - ( t ) 2 )

Making the necessary substitutions,

h t

R - x

-Ho

{t) = j
—x

-12(7

f e x p ( - f 2X

C (x)y fn

exp -exp

C(x)V2 7TCT

This equation can be conveniently expressed in a short
hand using the normalizing factor C(x):

(<> =
dC(x)

C(x)V2 dx

C(x) = -^erf
VÎCT

1 ,
+ —erf 

2 - J l o

One can take a similar approach for the second 
moment:

R - x

■J20 .2t " exp(-?2)  

C(x)yfn 

(

dt

C(x)2yfn

R - x \
- ? e x p ( - r 2 ) ^

42a

+  -

Using the same shorthand above,

cr2 d 2C(x) 1

2C(x) dx2 + 2

We now can express the variance of any row distribution 
as a function of its mean:

var[p(y I x ) ]=  2 a 2 ^ 2) -  (t)2 )

cr4 d 2C(x) 9 cr 
- +  c r  -

C(x) dx 

One should note that

______ (  dC(x)

(C (x))2 dx

\2

d (  1 dC (x )"| 1 d 2C(x) 1 r d C { x ) \

d x y C { x ) dx C(x) dx2 (C(x))2 v dx J

so the variance of any row distribution becomes:

var[p(y I x ) ]=  cr4 —  
dx

1 dC(x) 

C(x) dx
+ <7~

The latter is still a complicated expression and difficult to 
work with. However, if we measure the average row vari

ance over the mean, we can obtain an expression for o  ^ejj.

In the discrete case, taking an arithmetic mean for the row 
variance simply involves adding the variances of rows 1 to R 
and dividing by the range, R. Deriving a closed expression 
for this using var[p(y\x)] above would be quite difficult. It is 
possible, however, to consider jumping from the discrete 
case to the continuous case over the mean x. Specifically,

in the continuous case takes the form:

1 R
o 2eff = — \  var[p(y \ x)}lx 

^  0

R i

1 dC(x) 

C(x) dx
+  <J- dx

It is easily verified that for R »  cr.

/  1 dC (x)  Y  V2

C(x) dx
Jo

2 r  r  )
2

2
1— exP 

V7T

41
1

erf
r R ^

\ 4 ï a ,

V2KO'
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So to a strong approximation,

4

R'JlK

which is Eq. (3).

(II) Asymptotic Approximation

We would now like to evaluate the integral: 

R R

R

■. R R

H (Y  I X) = ---- 1 |  p (y  \ x ) In p(y  I x)dydx
0 0

where p(y\x) is defined in Eq. (2).

W I X )  = - I ] | In m
C{x)̂ 2kg2 C{x)yilK02

dydx

After some simplification

R , R1 1 1H (Y I X  ) =  - 1 (t2 )dx +  — |  In (C (j c ) )dx + -  In (ina2 )
R  « R  « ^

where (P-) is described previously in the appendix. The 
full expression therefore becomes

g- rf'CM J_ 
2C(x) dx2 2

H(Y\X) = - j  
** 0

or finally,

H{Y\X) = hn^.jtea2y ~ \  

as used in Eq. (5).

1 1
ix  H—  J In C (x )d x + —In (2 k g  2 )

RJ a 2 d 2C (x) , „  s .,
-------------------- l-lnC(x) )dx
2 C(x) rfr2 r

• Octave or I /3-octave band RTA • Frequency range of 6.3—20kHz.

• High resolution, backlit display • I20 dB dynamic range in I/3 octave bands.

• Up to 2.5 million sound level data stored • High speed data transfer (to 115k baud). 
• Real time frequency analysis in octave and I/3 octave bands with extended range. 

•Synchro measurements with real time clock • Simultaneous time constants.
• Sound power calculations per ISO 3744.

Scanteh
Sound and vibration 

instrumentation and engineering
7060 Oakland Mills Rd.,Suite L, Columbia, MD 2 1046 

Tel: 4 10.290.7726-Fax: 4 10.290.9167

lien  it's versatile, 
!, accurate

and easy to use...

■ P
The new Norsonic 118 puts all the power you need right in the palm of your hand. 
This all-digital, modular sound level meter has an extensive set of functions available 
now— and the capacity to grow as your needs demand:

Canadian Acoustics /Acoustique canadienne Go to: www.scantekinc.com or info@scantekinc.com

http://www.scantekinc.com
mailto:info@scantekinc.com


AR
CH

ITE
CT

UR
AL

 A
Ô

ÏÜ
ÏÏÎ

C
S

^^
M

 
O.

E.M
. 

EN
CL

OS
UR

E 
| 

EN
GI

NE
 

TE
ST

 
FA

CI
LIT

Y

SOUND S □  LUTI DNS FDRTHE

'

ê / : .
PI
—  . . . . .

* ^ 3

EC 14 EL
NOISE CONTROL TECHNOLOGIES

C A N A D I A N  □  F F I  C E 

Box 776 100 Allison Avenue Morrisburg O N  KOC 1X0 
Tel: 6 1 3 -5 4 3 -2 9 6 7  800 -563 -35 74  F a x :613-543 -4173  

Web sife: www.eckel.ca/eckel e-m ail: eckel@eckel.ca

http://www.eckel.ca/eckel
mailto:eckel@eckel.ca


SYSTEM 824
Five sophisticated acoustical instruments SLM/RTA 
in One!

1 Integrating Sound Level Meter meeting Type 1 
Standards with simultaneous measurement of sound 

pressure levels using fast, slow, and impulse detector, 

and simultaneous A, C, and flat weighting. It measures 

48 sound pressure parameters at once! All this with a 

105 dB linearity range!

Simple Sound Analyzer with simultaneous sound 
pressure level measurement and real-time 1/3 octave 

frequency analysis.

Logging Sound Level Meter permits data gathering of 

broadband sound pressure levels and frequency spectra 

over user-defined time intervals.

Real Time Frequency Analyzer with 1/1 and 1/3 octave 

analysis over a 20kHz frequency range and optimized 

for characterizing steady-state or high speed transient 
events.

Fast Fourier Transform Analyzer with 100, 200, and 

^  400 lines resolution and 20kHz range for specific 

frequency investigations.

For use in a wide variety of applications 

Research and Developm ent

Building Acoustics 
Sound Power Determination 

Vibration measurements 

Statistics

Simple Point Shoot 

Transient Capture

Environm ental

Aircraft Noise 

Industrial Noise 

General Surveys 

Transportation Noise 
Com munity Noise

Listen aMU with Larson»Davis

W orker Safety

Noise Exposure M easurements 

W ork Place Surveys 
M achinery Noise 

Audiometric Calibration 
Simultaneous C minus A M easurements

Dalimar Instruments Inc.
193, Joseph Carrier, Vaudreuil-Dorion, Quebec, Canada J7V 5V5 Tel.: (450) 424-0033 Fax: (450) 424-0030 

1234 Reid Street, Suite 8, Richmond Hill, Ontario, Canada L4B 1C1 Tel.: (905) 707-9000 Fax: (905) 707-5333
E-mail: info@dalimar.ca Website: www.dalimar.ca

mailto:info@dalimar.ca
http://www.dalimar.ca


by
 

ge
nc

a 
oi

l 
- 

fr
ar

tc
e;

 
+3

3 
47

6 
99

2 
9

9
9

Data management, report generation 
ODS, M odal • 
Sound Inteniity

• Sound Power 
• &aian«in«l

• Vibration Piagnoitic
_

THEN ASK FOR THE COMPLETE RANGE 
OF OROS AHALTZERS ft SOLUTIONS

* Need a complete so lu tion, 
guaranteed by a recognized name in 
the  NV field? Just choose an OR24, 
OR25 or OR38 analyzer and select the 
application package you need.

“ T h inkyou  may need more in the 
future? With the OROS range, you can 
expand your hardware as well as add 
software modules at anytime.

OROS Analyzers and Solutions cover a wide range o f measurement needs 
in the noise and vibration field.
For structural, rotating as well as acoustics measurements,OROS offers 
complete solutions.

• Can’t  take the  tim e to  repeat your 
tests? The new OR38 records the 
original time domain data on the 
interna! disk from 1 to 32 channels, and 
can also run several analyzers simul
taneously. This unprecedented 
flexib ility also ensures never losing 
your data.

,Am h-.fii iM W Ittfc ' am E l ’■ 1 :

2,4 20kHz PCMCIA DSP PC disk AC,external DC-Batt 2kg
2,4,8,16 20kHz PCMCIA DSP PC disk AC, DC, Batt 5 kg
8,16,24,32 40kHz U N DSP or PC Internal or PC disk AC, DC, Batt 7kg

Dalimar Instruments Inc. ^Jj986
Montreal : Tel. : (450) 424-0033 Fax : (450) 424-0030 ° Toronto : Tel. : (905) 707-9000 Fax : (905) 707-5333 

E-mail: in fo@ dalim ar.ca  ■  WEBSITE: W W W .D A L IM A R .C A

mailto:info@dalimar.ca
http://WWW.DALIMAR.CA

