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1. INTRODUCTION
Automatic speech recognition (ASR) of speech appears at 

first glance to he a simple task. Commercial systems often 
claim to do ASR reliably, but they usually require high-quality 
voice input and often impose many restrictions on what is said 
and how speakers talk, hi addition, recognition of speech in 
poor acoustic conditions is often unreliable. Another 
consideration is that o f computer resources. When ASR is done 
at a central computer, where system speed and memory is less 
of a concern, this latter issue may not be so important, but when 
ASR occurs in portable devices with limited power and 
memory, minimization of resources becomes important. We 
discuss m this paper an efficient ASR analysis method, which 
applies to adverse acoustical conditions.

2. BACKGROUND
A major problem for most ASR systems is robustness: they 

often arc insufficiently general or are over-trained when 
furnished with small training sets (as typically happens in many 
practical cases). An ideal robust ASR system should be able to 
properly decode speech from all speakers of a language (e.g., 
English), in any reasonable environment, and with different 
microphones and transmission channels. In practice, instead, 
environmental noise (from natural sources or from machines) 
and communication distortions m transmission channels (e.g., 
static, fading) both tend to degrade ASR performance, often 
severely. Human listeners, by contrast, usually can adapt 
rapidly and successfully to most such difficulties. This large 
difference between machine and human speech recognition 
performance strongly suggests that major Haws exist m current 
ASR schemes, hi particular, much of what the scientific 
community knows about human speech production and 
perception has yet to be properly integrated into practical 
computational ASR.

The speech signal must, be regularly converted to a 
representative, small set of parameters or features, in order to 
efficiently and reliably intrepret the audio signal (input to ASR) 
in terms o f phonemes and words. The most, common analysis 
method for today's ASR is the mel-frcqueney cepstral 
coefficient (MFCC) approach [1], In a. first step, either an FFT 
(fast Fourier transform) or LPC (linear predictive coding) 
spectrum is obtained using each speech frame as successive 
input. Then, for each frame, the logarithm of the amplitude 
spectrum is taken (converting to the decibel scale). Thirdly, a 
set of about 20 triangular filters, spaced according to the 
perceptual mel (or bark) scale, weights this result, yielding a 
snnple set of 20 output energies. Finally an inverse FFT using

the 20 energies as input is performed [2]. The low-order 
coefficients (e.g., 10-16 m number) of this last step provide the 
spectral vector for ASR use.

Among the advantages of this standard approach are the 
following: 1) an automatic and efficient method, which needs 
no controversial (i.e., error-risking) decisions, 2) actual ASR 
results that appear to be better than with some other methods 
extensively examined in the past (e.g., basic LPC, or a filter 
bank), and 3) an elegant mathematical interpretation of the 
MFCCs as somehow decorrelated (because the inverse FFT 
uses orthogonal sinusoidal basis functions). Despite their 
considerable popularity, however, the MFCCs are suboptimal:

1) The fourth step of the MFCC calculation (the inverse 
FFT - effectively low-order cosine weightings of the log 
spectral weighted energies) is motivated almost entirely on 
mathematical grounds, rather than communicational or 
scientific reasoning, which has led to representing spectral 
information for speech in a. very convoluted way. The first 
output coefficient (CO, which uses a. zero-frequency cosine 
weight) is simple energy , hence easy to interpret and utilize (if 
desired). The second (C l, using a cosine whose spectral period 
comprises the full frequency range) is thus a spectral parameter 
which indicates the global energy balance between low and 
high frequencies (the initial, positive half o f the cosine weights 
die lower half of the frequency range positively, and vice versa 
for die upper range). Thus, the first two coefficients are useful 
and subject to easy interpretation. However, all the other 
MFCCs are very difficult to relate to major aspects of speech 
production or perception. For ASR purposes, it is not essential 
that the parameters used be physically interpretable, but the 
MFCCs must be used altogether, m order to exploit die fact that 
they contain increasingly1 finer spectral detail (as die order 
increases). Although most individual MFCCs have little clear 
meaning (hi terms o f acoustics, the vocal tract shape, or 
phonemes), used together they can discriminate different 
sounds. Unfortunately, their lack of direct or simple 
correspondence to speech production and perception means dial 
they are very vulnerable to degradation when speech occurs 
under non-ideal acoustic conditions, such as in noise or with 
speakers having foreign accents.

2) It has often been posited that die MFCCs are 
uncorrelated in some sense, owing to the orthogonal basis 
functions used ni the inverse FFT [2], It is quite evident, 
however, that die MFCCs contain much overlapping spectral 
information, which causes the covariance matrices of their joint 
probability densities, as used in ASR, to be far from diagonal. 
Tins m turn loads to poor modeling assumptions in many ASR
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appiica lions which do indeed ollcn assume diagonal matrices 
(to cut computational costs), or to significantly increased 
computation to handle large general matrices [2] (for the 
minority of cases that use full-covariance matrices). As model 
order for MFCCs increases, of course, these matrices grow in 
size proportionately. Requiring 10-16 parameters (or more) 
becomes increasingly expensive in storage, computation, and 
training. The correlation of MFCCs is easily seen hi the 
example that both CO and Cl share large positive values for 
vowels and arc negative lor fricative phonemes.

3) Different speakers (especially those with different 
accents) exhibit varying spectral patterns when uttering (what 
listeners interpret to be) the same phoneme. Many of the 
variations often have simple interpretations acoustically and 
linguistically; hence adaptation to such variation should not 
theoretically present such a large problem. In practice, ihe ASR 
field spends much research on adaptation issues, both those due 
to varying speakers and to varying transmission channels. If we 
employ spectral parameters that have a ready physical 
interpretation, il is feasible to model accent and channel 
variation simply. However, the lack of such ability to interpret 
the MFCCs usually forces ASR to employ "brute-forcc" 
methods, e.g., simple averaging of distributions to handle 
different speakers and channels. Such merging of data models 
often leads to increased variances and hence to lowered 
discriminabilily against other, incorrect phoneme models. For 
these and other reasons, the MFCCs should not be considered 
as the ideal speech analysis tool, despite their recent popularity.

3. ALTERNATIVE SPECTRAL MEASURES
hi the early stages of serious ASR work, formant 

frequencies were considered the primary objectives of speech 
analysis. Expert system approaches to ASR abounded then, and 
formants were widely accepted as the obvious targets for 
speech analysis. Unfortunately, the automatic formant 
estimation methods of the 1970s (needed for ''automatic" 
speech recognition) failed to achieve sufficient accuracy. 
Formants were difficult to follow reliably, as they often 
approached each other close enough to be viewed as a merging 
(in spectral displays, such as the FFT) and the formants varied 
widely in amplitude as a function of tune.

We do not propose yet another attempt at formal formant 
trackers, for two reasons: 1) the continued difficulty of formant 
tracking, and 2) formants (as such) are not required for ASR. hi 
our opinion, it was an error for ASR researchers to insist on a 
strict formant tracker as a separate module for ASR. Indeed, 
robust spectral measures better than MFCCs are quite feasible 
based on spectral peaks similar to formants, and this is where 
we propose to raise ASR accuracy. When faced with 
increasingly noisy speech (as is found in many practical ASR 
conditions), the peaks of such speech spectra are the most 
robust (i.e., the last aspects to be lost as noise grows). More 
robust ASR is thus possible by directly exploiting peaks, rather

than approaches that deteriorate quickly hi noise (e.g., MFCCs 
or LPC).

Trying to consistently track all the formants was a mis­
taken and unnecessary task for ASR. Instead, identifying the 
major spectral peaks m an utterance and their gross temporal 
dynamics tire what appears to be crucial for ASR. hi oilier 
words, coarse detail about spectral peaks is important; precise 
tracking of formants is not. We do not need formants identified 
as F I, F2 and F3 for all speech frames. Instead, we propose a 
spectral-peak-based analysis measure which can be 
simultaneously robust, informative, and efficient. Such a 
measure needs as few as six coefficients to represent the mam 
spectral peaks (three center frequencies and then coarsely- 
measured bandvvidths), and thus is clearly more efficient for 
ASR than either LPC or the MFCCs.

For noisy telephone digit strings, our method can achieve 
good recognition rates, without requiring the complexity of full 
mel-cepstral evaluation and avoiding the large search 
calculations of a full IIMM approach. As noise levels are 
increased, the weaker portions of the tclphonc-band spectrum 
are increasingly obscured, but sufficient information remains 
concerning the spectral peak positions of the lower formants to 
allow digit discrimination, even in significant noise. Mistakes 
confusing 5 and 9 tire common when the noise obscures most of 
the consonant energy in those- digits, although the 
coarticulaloiy effects of the consonants (labial in 5 and alveolar 
in 9) permit some discrmiination even when the consonants are 
fully obscured. Allowing a comparison focussed on critical 
frames at the ends of the vowel (rather than a uniform frame- 
based method) permits better utilization of the speech energy hi 
the presence of noise. More details of the results will be 
presented at the conference.

4. CONCLUSION
A case can be made that the current IIMM-MFCC approach 

to ASR has sufficient flaws as to need eventual replacement. 
Certainly the persistence of high error rates for many tasks that 
humans find easy argues that incremental improvements may 
well not be enough to render current ASR suitable for 
widespread applications. The ASR of the future must be both 
knowledge- and stochastic-driven.
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