Acoustic Parameters as Cues to Judgments of Happy and Sad Emotions in Music

Michael E. Lantz ${ }^{1}$ and Lola L. Cuddy ${ }^{2}$
${ }^{1}$ Dept. of Psychology. Qucen's University, Kingston, Ontario. Canada. K7L 3N6 lant/m@èpsyc.quecnsu.ca
${ }^{2}$ Depl. of Psychology. Quecn's University, Kingston. Ontario, Canada, K7L 3N6 cuddylopssyc.qucensu.ca

1. INTRODUCTION

Though music can be appreciated for its techmical merit and precision, it is no doubl the cmotional content that is the main altraction for listeners (Parkscpp. 1995). Clynes (1986) belicyed that cmotions have biologically specificd dynamic forns present in a gesture, music, dance. cic. If so. then the dynamic forms of emotion in music must be identifiable from the available acoustic paramelers.

Acoustic parameters may be defined in terms of musical properties. Two parameters that have been studied extensively are tempo, or beats per minute (bpm) and mode, or key. Generally, a fast tempo and major mode are associated with "happy" music, and a slow tempo and minor mode with 'sad' music (Dalla Bella et al., 2001; Hevner, 1935, 1937; Peretz, Gagnon, \& Bouchard, 1998). However, other parameters, such as vibrato (frequency modulation) and articulation (related to tone onset rise time) (Gabrielsson \& Juslin, 1996), have also been found to affect judgments of happy and sad emotion in music.

Our stratcgy was to select short musical scgments, half composed with fast icmpo and in the major mode. and half with slow tempo and in the minor mode. On the basis of past rescarch. it was expected that the former would elicit judgments of happy and the latter judgments of sad. Differences in tempo and mode were then seleclively removed so that Icmpo and/or mode could nol be used as cucs to discriminate cmotional conem. Reduced discrimination between the two types of segmemts would therefore implicate the role of tempo and mode. As well. the segments were later analysed for oller polential correlates to judgments of emotion.

2. METHOD

2.1 Participants

The first of two groups included 20 (17 women, 3 men) third-year university undergraduates with a mean age of 23.0 yrs (range $21-30 \mathrm{yrs}$). The second group consisted of 42 (23 girls. 19 boys) high school students with a mean age of 16.7 yrs (range 15-18 yrs). Participants in both groups represcmed a wide range of music (raining--from enro to 12 ycars.

2.2 Stimuli

Twenty pieces of Western classical music in MIDI formal were chosen so that 10 of the picces had a relatively fast tempo (mcan = 151 bpm) and werc in the major mode and the olher 10 had a relatively slow iempo (mean $=60$ bpm) and were in the minor mode. Seginents of ilitec durations-0. 5 s .1 s , and $2 \mathrm{~s}-$-w erc taken from cach picce. each beginning at a common point witlin the picce. Segments were presented under cach of four cue condilions: (1) original icmpo and mode: (2) cqualǐed Icmpo (90 bpm) but original mode: (3) all in major mode but original tempo; (4) cquali/ed iempo with all in major mode. Condition 2, 3. and 4 were constructed with sound ediling software. Play back of stimuli was restricted in timbre and intensity. All segments were realized by a Yamaha S 100 XG piano tumbre and key velocity was held to a narrow range.

2.3 Design and Procedure

There were 240 trials--20 randomly ordered segments within each of 12 blocks. Each block represented one of the factorial combinations of three segment durations and four cue conditions. Participants rated each segment on a 10 -point scale, where ' $1=$ very sad', ' $5=$ slightly sad', ' 6 $=$ slightly happy' and ' $10=$ very happy'. Participants were tested in groups.

3. RESULTS

For both the original and edited segments, segments from compositions with fast tempo in the major mode were rated as significantly more 'happy' than segments from compositions with slow tempo in the minor mode. The difference decreased as the original tempo and mode cues were removed, as exemplified in Figure 1 for the 2 s segments. Differences were highly significant ($\mathrm{p}<.001$) even at the shortest (0.5 s) duration, and increased as segment duration increased. Thus, the data implicate tempo, mode. and duration as influencing judgments of happy and sad emotions in music.

However. the finding that ratings for the two types of segments differed significantly when both tempo and mode cucs were removed suggests the presence of other cues influcncing judgment. Mean ratings for each segment were entered into a regression analysis with prediclors note
density (tumber of noles per s) and average pitch height along with tempo and mode. Results are shown in Table 1. All four predictors contribuled significantly to the regression. From the beta weights, note density and mode were delermined to be the most important cucs in predicting emolion ratings.

Figure 1. Mean emotion ratings for 2.0 s 'happy' and 'sad' segments in the four conditions for University (top) and High School students (boltom). The orientation of the rating scalc is from sad ' 1 ' to happy 10°

4. DISCUSSION

Both groups were casily able to use ratings of lappincss/sadness to dislinguish propertics of musical segments with as little as 0.5 s exposure. When tempo and mode cues were removed, judgments became less distinct. Replicating earlier studies, the present study found that tempo and mode are clearly implicated in judgments of musical emotion.

The regression further clarified the irvolvement of tempo and node but also showed that note density is as important as mode, and average pitch height of a segment may be more important than tempo in judgments of emotion. More notes per second and a higher average pitch height both lead to higher happiness ratings. Similarity of the two groups in ratings and in the regression cquations suggests that, by the age of 15 ycars. pcople respond in an adull way.

In summary. Icmpo and mode were verificd as imporlant cucs to judgments of happy and sad cmotion in music. The
addition of note density and average pitch height as perlaps cqually important cucs to judginents of cmotion has implications for further rescarch on cmotions in music. Interpretation or data, laking into account only tempo and mode. may be problematic because identification of cmotion can take place through other, uncontrolled cucs available in music (Lanť, Kilgour. Nicholson. \& Cuddy. in press).

Table 1. Resedis of multiple regression of acoustic cues on emotion ratings for both unversily and high selool students.

Cue	University			High School		
	bcta	l	p	bcla	1	p
Notc	. 459	12.31	<001 **	. 399	11.13	<001 **
Density						
Mode	. 352	9.80	$<.001$ **	. 415	11.99	$<.001^{* *}$
Pitch	. 215	6.28	$<001{ }^{* *}$. 228	6.94	$<001^{* *}$
Height						
Tempo	. 179	2.64	$<.001^{* *}$	186	5.53	$<.001 * *$
Variance Accounted For		76\%**		$78 \%{ }^{* *}$		
${ }^{* *} p<01$						

REFERENCES

Clynes, M. (1986). Gencrative principles of musical thought integration of microstructure with structure. Toumal for the Incegrated Study of Artificial Intelligence, Cognilive Science and Applied Fpistemology, 3, 185-223.
Dalla Bellia, S., Perele, L, Roussiatu, L., Gossclin, N., Ayolte, J., de L.avoie \wedge. (2001). Development of the happy-sad distinction in music appreciation. Annals of the New York Academy of Sciences, 930, 436-437.
Gabrielsonn, Λ \& JuslinP N. (1996) Emntional expression in music periormance: Between the performer's intention and the listener's experience. Psychology of Music, 24, 68-91.
Hevner, K. (1935). The alleetive characler of de major and minor modes in music. American Journal of Psychology, 47, 103118.

Hevner, K. (1937). The affective value of pitch and tempo in music. American Journal of Psychology, 49, 621-630.
Lank, M. L., Kilgour, A. R., Nicholson, K. (i, \& Cudly, L. L. (in press) Judguents of musical emotion following righthemisphere damage. Brain and Cognition.
Panksepp, I (1995). The emotional sources of "chills" induced by music. Music Perception, 13, 171-207.
Peretz, T., (iaguon, I. \& F Fouchard P. (1998). Music and emotion: Perceplual determinants, immediaty and isolation after brain damage. Cognition, 68, 111-141.

ACKNOWLEDGEMENTS

This study was supported by a research grant to the second author from the Natural Sciences and Engineering Conncil of Canada. The authors thank I'rank Russo, Christime Koh, Jason Cullinore, Alan Castel, Allison Kellh, and Panela Seeds.

