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ABSTRACT

In this work ‘the source simulation technique’ was used to calculate the scattering of a plane wave by a cir­
cular cylinder with surface impedance that varies with position. The basic idea of the source simulation tech­
nique is to replace the scatterer by a system of simple sources located within the envelope of the original 
body. The efficiency of the method was verified through the comparison between numerical results and 
experimental data. The calculation of the scattering was performed for the variants of the method: the sin­
gle-layer method and the one-point multipole method. The matching between theoretical and experimental 
results was in the overall good, despite some occasional discrepancies.

SOMMAIRE

Dans cet ouvrage, la technique de simulation de source a été utilisée pour calculer la diffusion d'une onde 
plane par un cylindre avec une impédance de surface qui varie avec la position. L'idée de base de la 
technique de simulation de source est de remplacer le diffuseur par un système de sources simples localisées 
à l'intérieur de l’enveloppe du corps original. L'efficacité de cette méthode a été vérifiée en comparant les 
résultats numériques et des données expérimentales. Le calcul de la diffusion a été faite par les variantes de 
cette méthode: la méthode de couche unique et la méthode multipôle à un point. Les résultats théoriques et 
expérimentaux étaient généralement comparables, en dépit de divergences occasionelles.

1. I n t r o d u c t io n

The mathematical treatment of radiation and acoustic 
scattering represents a very old and much studied problem of 
mathematical physics. Both phenomena were first treated 
more than a century ago by Lord Rayleigh [1,2]. Rayleigh 
suggested that the sound field radiated from a transverse 
vibrating rigid body is built up from spherical wave func­
tions. This is the basic idea of the source simulation tech­
nique, that is, to replace the vibrating body by a system of 
radiating sources, which act in an equivalent way on the sur­
rounding medium as the original body. The sources are 
located inside the radiator, and the problem consists of find­
ing the source amplitudes. As long as the source amplitudes 
are known, the pressure and the velocity can be mapped at 
each point in the field.

This work was aimed at 1) showing the formulation of 
the scattering problem with the source simulation technique 
and 2) presenting its variants, the one-point multipole 
method and the single layer method. These variants were

employed in the calculation of the scattering by a rigid cylin­
der, an absorbent cylinder, and by a cylinder with variable 
surface impedance. The cylinder was always considered 
infinite. The numerical results thus obtained were compared 
to experimental data collected in an anechoic chamber.

2 . D e s c r i p t i o n  O f  T h e  R a d ia t io n  A n d  

S c a t t e r in g  P r o b l e m

Consider the scatterer or radiator with surface S. The 
interior from S is called Sj and the exterior field Se. The nor­

mal surface n is directed to the exterior field Se 

Throughout this article, only the exterior problems will be 
treated [3].

In the exterior field, the complex sound pressure p 
should satisfy the Helmholtz equation

Ap + k 2p = 0 ^

where, k = oVc is the wave number, œ is the circular fre-
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quency, c is the speed of sound and A is the Laplace opera­
tor. All the variables as functions of time should obey the

function As long as the sound radiation in a free three- 
dimensional space is considered, the pressure p  should also 
satisfy the Sommerfeld radiation condition [4]:

L i m ^ r
dp
T  + j k por

=  0 (2)

which could be considered as the boundary condition at 
infinity. Here,

r = x
and r is a position vector and denotes the distance from the 
center to each point x  in the field. Ochmann [5] termed the 
solutions of Eq. (1) satisfyimg the boundary condition of Eq. 
(2) as radiating wave functions. Typical functions that repre­
sent this class are called spherical wave functions ([5], [6]), 
which are generated when the solution of the wave equation 
is obtained in spherical coordinates. For the sake of sim­
plicity, radiating wave functions will be called sources [5]. 
A complete description of the problem requires a description 
of boundary conditions on the surface of the radiator or scat- 
terer. The Neumann boundary conditions will be considered 
here. In this case the normal velocity, vn, and the gradient of

the pressure

d p ld n -  -j(opvn (3)

on S are described. In Eq. (3), p is the density of the sur­
rounding medium S and <5/5/j is the derivative in the direc­
tion of normal n into the exterior field Se. The problem of

acoustic radiation is obtained if the normal velocity consid­
ered on the surface of the body is different from zero vn * 0.

Equation (3) represents an inhomogeneous boundary condi­
tion. Equations (1) and (2) describe the radiation problem for 
the radiated pressure p. With respect to the scattering prob­
lem, one should consider the incident wave pj which on its

propagation encounters the surface S, then generating the 
scattered wave ps. The scattering problem for the scattered

< Si

\ (  sources m
\ M/

S

Figure 1. Geometry of the radiation and scattering problem 
(Ochmann, 1999).

wave ps is described by Eqs. (1) and (2), but the pressure p  

should be accordingly substituted by pressure p s in both 

equations. Considering again the Neumann boundary value 
problem, the outcome is that for a totally rigid body, the sur­
face velocity should be equal to zero, that is, vn = 0. That is,

dpldn = 0 (4)

In Equation (4) the pressure p  represents the total pres­
sure p t = p i + py  Equation (4) thus represents a homoge­

neous boundary condition. The scattering problem can then 
be formulated as a radiation problem. One should then con­
sider velocity Vj of the incident wave Pj on the surface S. If

surface S vibrates with negative normal velocity (-vy), the 

radiated pressure is identical to the pressure p s, originated 

from the incidence of pj on S [4]. As a consequence, it is 

possible to write instead of Eq. (4)

dp / dn=- ja p  (-v,- ) (5)

for the scattering problem. Equation (5), similar to Eq. (3), 
represents an inhomogeneous boundary condition. Equations 
(1), (2) and (5) thus describe the scattering problem in an 
equivalent way to a radiation problem with respect to the 
scattered wave ps .

3. P r i n c i p l e  O f  T h e  S o u r c e  S im u l a t i o n  

T e c h n iq u e

The principle of the method is based on a treatment of 
the radiation problem or the scattering problem through a 
system of radiating sources, which should be chosen so that 
they reproduce as well as possible the sound field generated 
by the body of Figure 1. In the space previously occupied by 
the body S, the sources can now be found in region M shown 
in Figure 1. The sources are taken as point sources, and 
therefore do not represent an obstacle to the sound field. As 
a consequence the field generated by each one can be 
summed without taking into consideration interference 
effects. As the source amplitudes are known, the sound field 
can then be easily calculated through the sum of the fields 
generated by each source individually. The true problem 
consists then in finding the sources that can best replace the 
original body. As a consequence, two important questions 
arise:

1) Which is the type of source to be used and how should 
they be placed inside the body?

2) Which optimization method should be employed for the 
results?

Mathematically the problem is based on representing 
the sound field by summing up the contributions of the indi­
vidual sources
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"q,mr q,m (6)

N q  m = + oo

/ ? =  È  Ë A .
ç=l m = —oo

where p  represents the scattered pressure or the radiated 
pressure in the field; A^ m is the complex source strength of

the (p 1 source at a point in the field; m is the order of each

source and 0g  m is the sound field generated by the sources.

In Eq. (6) &q m could also be called the source function.

Equation (6) intrinsically has the condition that each field 
can be represented by a sum of functions of the type &g m.

This is naturally the case, only if all functions <Pq m satisfy

the wave equation and if they form a complete function sys­
tem. This condition is certainly satisfied if <Pq m represents,

for example, the field generated by a monopole, dipole or 
quadrupole. As no difficulty has been noted by other authors 
([5], [7], [8], [9], [10]) when multipole sources were used for 
the reconstruction of the acoustic field, the same procedure 
will be used in the present work. In other words, the multi­
pole sources will be used to represent the radiation or scat­
tering problem of the original body.

Two distinct situations pose themselves:

1) one can use a variable order multipole localized in a sin­
gle point inside the body, that is, in Eq. (6) Nq = 1 and 
M is very large, or

2) one can use only monopole sources positioned in sever­
al points inside the body, which renders Nq very large 
and M = 1 in Eq. (6).

One can also have a combination of both extreme cases 
presented in a) and b), that is, to use a multipole positioned 
in several points. Together with the choice of the type and 
the positioning of the sources, the choice of the optimization 
criterion also imposes a fundamental question for the use of 
the source simulation technique. The error derived from this 
optimization should be minimized. Several methods can be 
used to that end, such as the null field method, the colloca­
tion method, or Cremer’s method. The least square mini­
mization method has been used in this work.

4 . S o u r c e  F u n c t io n  S y s t e m

If a source alone generated the sound pressure A^ m
&q m, then the sum

Nq m =+M

p = Y ,  I X , ^
q= 1 m ——M

(7)
q,m

can be written in conventional coordinate systems, can be 
used: spherical coordinates (for three-dimensional problems) 
and cylindrical coordinates (for two-dimensional problems).

The velocity generated by the source function system at 
the radiator surface is calculated by inserting Eq. (7) in Eq. 
(3). For reasons of simplicity, we have taken the one-point 
multipole method, so that q = 1

V„ = -
1 m=+M

I  A,
dflm

" dn

(8)

should approximate the original field as well as possible. 
Each of the individual source functions m is supposed to

meet the radiation condition in Eq. (2) and the wave equation 
in Eq. (1) in the exterior field domain Se. When these condi­

tions are satisfied, one can take them from any complete 
function system. In practical terms, source functions, which

m  m=—M 
Eq. (8) can be rewritten, since k = CtVc, as

^ m —+M

v „ = -----------
(9)

P  oc o

where,

Z m =  ( l /  jk )d ® m /d n

is a function defined in a similar way as in Heckl [8]. For 
example, the function Zm in the commonly cylindrical coor­

dinates for two dimensions is given by

1
H „(,2) (,\R)e+im* ^  + - H ™  (kR)e+*"* ^  

an k an
(10)Zm - + ~

J
where,
R is the radius from the radiated body;

H l 2\ k R )  and H ™ (k R )

are the derivative of the Hankel function of the second order; 
and the Hankel function of the second order, respectively. 
For the scattering problem, the calculations go in a similar 
way. The total velocity generated on the scatterer surface is 
given by

V,(«) = V ! + V 2 (11)

where is the total generated velocity on the scatterer 

surface in the normal direction, vj is the velocity from a nor­

mally incident wave at the surface of the body, and V2 is the 

scattered velocity when the body is present in the field

vm
1 d(Pi). 

ja p  dn
1

j®P dn

(12)

where pt is the total pressure on the scatterer surface and is 

given by

Pt = Pi + Ps (13)

Nq m=+M

Pt = Pi+^L
<7=1 m ——M

(14)
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where is the pressure from the incident wave and p s is the

scattered pressure in the field. For reasons o f  simplicity, we 
have taken again the one-point multipole method, so that q 

= 1,

m = + M

p t = p i +
m = - M

and

m
1 d ( p r ) _ 

jcop dn jcop on m = —M

(15a)

(15b)

The function Zm  is the same as in Eq. (10) for the two-

dimensional problem with cylindrical coordinates. If the 

incident wave is a plane wave in cylindrical coordinates

P i  =  P  oe
- j k R c  os(0) (16)

SO, V't(n) is rewritten as

P o cos (</>>
- jkRcos{(f))

m = + M

(17)
P0C0 P0C0 m = - M

The requirement that the velocity distribution given by 

Eqs. (9) and (17) generated by the sources at the surface 
should approximate the prescribed normal velocity as well as 

possible leads to a linear system of equations through which 

the complex source strength will be determined.

5 .  O p t i m i z a t i o n  C r i t e r i a

Several methods can be used in order to minimize the 

error in the surface velocity approximation [10]. The least 
squares minimization method has been used in this work. 

The technique consists in minimizing the surface integral 

error

'('O '
-v J  dS = Min (18)

which sums the errors generated in the approximation of the 

surface velocity. In Eq. (18) S is the surface o f the scatterer, 

dS  a surface element and vt(n) is the velocity generated by

the source simulation technique. For the special case of scat­

tering from a rigid body, the surface velocity is zero, so that 

vb = 0.

n  2
t { n ) dS = Min

(19)

The velocity has the same form as in Eq. (15b) for the one- 

point multipole method. The system of equations for the 

determination of the sources strength A m  is obtained through

the calculation o f  the partial derivative of the integral in Eq. 

(19) with respect to A m, and letting the result equal to zero

r)Am
IK dS =  0 (20)

The solution o f  the linear system of Eq. (20) gives us the 

sources strength A m  which when substituted in Eqs. (15a)

and (15b) allow the calculation o f the sound pressure and the 

sound velocity for each point in the acoustical field. Thus, 

the problem is perfectly solved. For the somewhat general 

case, that the body is not rigid but has a constant relation on 

the whole surface between the total sound pressure and the 

total sound velocity in the direction o f the normal, this leads 

Eq. (18) to
2

dS = Min (21)
/ (» ) ’

E i

z

where Z  is the surface impedance o f  the scatterer.

The condition imposed on impedance is that it should 

not have lateral couplings, that is, it should be locally react­

ing. This means that one part o f the surface is not aware of 

the motion of another part, and the reaction o f one part o f the 

surface is proportional to the local pressure at that point. 

This condition indicates the non-inclusion o f elastic surfaces 

(for example, surfaces where flexion waves are possible). 
This extremely rigid limitation should be verified in each 

case. Elastic bodies, as for example a thin-walled cylinder 

immersed in water, certainly do not satisfy it. For porous 

materials (for example foam) one can in principle assume 

that for air borne sound there is no lateral coupling, that is, 

the materials are locally reacting. In the same way, we can 

calculate the radiation problem with the least squares tech­

nique. This leads to the surface integral

v , - v „  dS = Min (22)

and again the surface error should be minimized. In Eq. (22) 

is the velocity o f  the vibrating body and vn is the veloci­

ty generated from the sources. For the one-point multipole 

method and for the two-dimensional case in cylindrical coor­

dinates vn is the same as in Eqs. (9) and (10). As in the case

of scattering, if  the partial derivative in Eq.(22) is calculated 

with respect to source strength A )n and making the result

equal to zero, one has a system of linear equations through 

w hich the com plex sources strengths are determined. 

Substituting them in Eqs. (7) and (9) we have the pressure 

and the velocity at each point in the acoustic field.

6 .  C a l c u l a t i o n  O f  S c a t t e r i n g  F i e l d  b y  

S o u r c e  S i m u l a t i o n  T e c h n i q u e

The next issue to be addressed is the problem of calcu­

lating sound scattering for an infinite circular cylinder, in 

which the random distribution o f  the surface impedance is
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considered. The calculation will be performed for the one- 
point multipole method and for the single layer method.

6.1 One-Point Multipole Method

In this case the approach includes the choice of multi­
pole expansions up to high orders at only one location. 
Using the symmetry of the circular cylinder, the location 
point coincides with the center of the cylinder. The condition 
of an infinite cylinder means that the problem is treated inde­
pendently of the axial direction, that is, 5/5z = 0. It must also 
be pointed out that only plane harmonic waves are consid­
ered in this work.

The total pressure pt can be written as a sum of the inci­

dent plane wave p i and the scatterer wave ps

P ,  =  P i  +  P s (23)

The incident plane wave traveling in a direction perpen­

dicular to the cylinder’s axis is given by pi = p g e 'i^ ,  and pg 

is the amplitude. The scatterer wave ps is given by Eq.(7) 

and Eq. (15), so that

m=+M

p, = p 0e- ^ “w +  <24)

In cylindrical coordinates,x - r  cos(0 ), and r  is the distance 
between the center of the cylinder and any point in the sur­
rounding medium.

The expression for the velocity is obtained through Eq. 
(3), since the normal direction coincides with the radial 
direction and on the surface r  = R.

P  o
v»0.) 7 cos

0 ^ 0  m = - M

where Z q  = p g c g  is the specific acoustical impedance of the 

air and

H T ( k R )

is the second order derivative of Hankel function. All time

varying quantities should obey the time dependence e+Jœt. 
As the exponential factor is shared by all field quantities, it 
can be omitted.

As mentioned earlier, the surface impedance is assumed 
to be locally reacting. Therefore, the boundary conditions 
for each surface element and for each angle <6 on the surface 
is,

1 m=+M
fyyj*cos(,)̂ _ (25)

Vt{n) =  P t I Z (26)

where Z is the surface impedance.
In this work it is considered that the impedance is ran­

domly distributed on the surface. Hence, the impedance

could be infinite, that is, for a rigid surface in the interval <3>q 

< <I>j, or could be finite, assume the value Z in the inter­

val <E>] < <E> < <t>2- The impedance Z was measured with the

standing wave apparatus for a 5 cm-thick foam, and will be 
used in the numerical calculation as inputs for the solution of 
the problem.

Considering the optimization criterion given by Eq. 
(21), we have

2

R P 1 d(j) - Min
(27)

Differentiating Eq. (27) with respect to the unknown source 
strength and making the result equal to zero, we obtain a sys­
tem of linear equations with them the complex sources 
strength, that is, the solution of the posed problem, can be 
find.

6.2 Single Layer Method

In this method, several monopole sources are positioned 
on an auxiliary surface. The auxiliary surface is placed 
inside the body. Note that the auxiliary surface should not 
coincide with the surface of the original body. If the auxil­
iary surface coincides with the surface of the body, the prob­
lem cannot be solved by the source simulation technique. 
Instead other methods such as boundary element method 
(BEM) need to be applied. The auxiliary surface has the 
same form as the surface of the body being studied, that is, 
the circular cylinder. For the total pressure we have

+ S V W  (28)
q=\

P \  =  P o e
—jkR  cos(</) )

where r  is the distance between a point with polar coordi­
nates (R, <t>) on the cylinder surface and a source point q with 
the polar coordinates (r(q)< ®(qp- R *s the radius of the cir­

cular cylinder. The cosine law gives us

r = ̂lRl +  rl) ~ 1 Rr(c)cos ~ )

and the normal component of the velocity on the surface at a

P*

Light Zone

Monopole

Shadow Zone

Figure 2. Single Layer Method for the rigid and absorbing 
circular cylinder.
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point (R, 0 )  is 

VK«)= ^ C0S^ ) e"
jk R c  os(i «tr>'(K)(29)

0 ?=1

where, r ' ( ^ )  = ô ( r ) /3 ( /? )  and
is the second order derivatives of the Hankel function. 
Inserting Eqs. (28) and (29) into Eq. (27), the partial deriva­
tives with respect to the unknown source strength are equat­
ed to zero, and then we obtain a system of linear equations 
similar to Eqs. (36). This system of equations give us the 
complex sources strength, that is, the solution of the prob­
lem.

7. E x p e r im e n t a l  M e t h o d o l o g y

The experiments were performed in an anechoic cham­
ber with a 3 m long rigid cylinder with a radius of 15 cm (see 
Figure 3). The cylinder surface was covered with a 5-cm 
thick porous absorbing material. The impedances of the 
absorbing material were measured for different frequencies 
(200-8000 Hz) by a standing wave apparatus. The absorbing 
cylinder was covered for half of its perimeter with a metal 
plate, thus resulting in a half-rigid/half-absorbing cylinder. 
This characterization depends on the face of the cylinder 
exposed to the incident wave. The sound was generated by a 
noise generator in 1/3 octave bands and after being amplified 
it was irradiated through a loudspeaker. The sound was 
measured by a microphone mounted on a turning table which 
could face either the shadow zone or the light zone. The 
sound pressure levels were measured at each 10° of approach 
of the turning table, first without the cylinder in the field and 
then with the cylinder in the field. The difference between 
these measurements gives us the sound attenuation due to the 
presence of the cylinder, which is dependent on the frequen­
cy, on the surface impedance, and on the distance from the 
microphone (measuring point) to the center of the cylinder.

8. R e su l t s  A n d  D is c u s s io n

The verification of the efficacy of the source simulation 
technique for the calculation of acoustical fields was by 
comparing the numerical results with the experimental data. 
In this sense, sound attenuation (shadow zone) produced by 
the presence of the cylinder in the field was both measured 
and calculated. It is impossible to present all the results 
obtained due to the great number of factors involved, such as 
frequency, distance from the point of measurement to the 
center of the cylinder, position angle, and surface imped­
ance. Only some of the results obtained for the 1) rigid 
cylinder, 2) absorbing cylinder, and 3) absorbing and rigid, 
will be presented here. The results were calculated using the 
single-layer method, which were not essentially different 
from the ones obtained using the one-point multipole 

method.

Figures 4 to 6 show that although there is a very good 

agreement between the numerical results obtained with the 
source simulation technique and the experimental data, some 
discrepancies can be noted. Possible causes are discussed 
below. One possible reason for the differences in the values 
obtained for the sound attenuation in Figures 6 to 8 is that the 
calculation was undertaken for a bi-dimensional problem, 
while the measurements were performed in a three-dimen­
sional model. The numerical calculation is always valid for 
a single frequency. However, the experiments used the 
sound generated by a band of 1/3 octaves. This fact can lead 
to inaccuracies in the numerical calculation, as the acoustical 
field generated by the scatterer changes too rapidly with the 
frequency and the angle of the measurement point. This 
numerical difficulty can be avoided if one takes the mean of 
the results for several frequencies inside each band of fre­
quencies. In other words, the central frequency of the band 
of interest is considered and the frequencies below and 
above the central frequency are harmonically calculated. 
Several numerical tests were performed and one can con­
clude that a good approximation of the theoretical and exper­
imental results can be obtained when the mean value was 
calculated out of 5 frequencies. However, one should not 
discard the possibility that, in some cases, the mean value 
should be calculated from a larger number of frequencies, 
especially in the high frequency range.
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Figure 4. Scattering from a rigid cylinder: kR=8.66; dis­
tance from a point in the field to the center of the cylinder: 

58 cm, number of monopoles: N=35.Figure 3. The rigid cylinder and the turning table.
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Figure 5. Scattering from an absorbing cylinder: kR=23; 
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Figure 6. Scattering from a half-absorbing and half-rigid 
cylinder: kR=14.65; distance from a point in the field to the 
center of the cylinder: 47 cm, number of monopoles: N=59, 

surface impedance: Z=250.3 -  j 200.

The influence of possible reflections from chamber 
walls was tested if the sound attenuation in the shadow zone, 
( 0  = 0) was above 20 dB, by placing the cylinder in other 
positions as well as at longer distances from the walls. 
However, the new measurements did not show any signifi­
cant difference from the results obtained previously. 
Equation (27) is based on the hypothesis that the surface 
impedance is locally reacting. This hypothesis was also con­
sidered for the 5-cm thick foam with which the cylinder was 
covered, thus generating an absorbing cylinder. In order to 
confirm that the foam was locally reacting, fissures were 
made in the surface of the foam. But the sound pressure lev­
els measured afterwards showed no significant modification 
when compared to the values obtained previously. One may 
thus conclude that the material used behaves as locally react­
ing. An ideal agreement between calculation and measure­
ment would be obtained if the index M  in Eq. (24) or the 
index Ng  in Eq. (28) grow without any bounds. That is, in

practical terms, impossible because of the immense comput­
ing time. Numerical simulations have shown that a good 
agreement between calculation and measurement is found 
for M max = 4nRX, and for ^ g (max) = 6nRX, where R is the

cylinder radius and X is the wavelength. Exceptions to this 
rule are in some regions of the shadow zone, between -10° < 
<5 <+10°.

Another important reason for the differences between 
the numerical results and the experimental data resides in the 
fundamental principle of the method, that is, not exactly 
reconstructing each surface element at the given boundary 
conditions, but to minimize the error through an integration, 
like in Eq. (18), over the whole perimeter of the body. 
Equation (18) corresponds to the optimization of the error in 
the surface velocity approximation in the least mean square 
procedure. Equation (18), and thus the source simulation 
technique allows the control of the error as they satisfy the 
boundary conditions for every computation. This is a very 
important characteristic of this method, mainly when an ana­
lytical solution to the problem is not available. For practical 
cases, however, it would be important to assure a controlled 
accuracy not only of the surface velocity as in Eq. (18), but 
also in the determination of the sound power. The use of an

infinite number of sources would certainly allow the precise 
reconstruction not only of the surface velocity, but also of the 
sound power. It must be pointed out therefore, the recon­
struction of the surface velocity is reasonably accurate due to 
the use of a finite number of sources (a maximum value for 
M  and Ng). However, the finite source number is nt suffi­

cient for the determination of the sound power. With this 
limitation, one has in hand a very efficient method for the 
reconstruction of the acoustic field.

9 . C o n c l u s io n s

This work has presented the study of the scattering for 
an infinite cylinder with variable surface impedance, both 
numerically and experimentally. The theoretical analysis 
used the Method of Source Simulation. This method has 
been frequently used in the last decade for the solution of 
purely theoretical and/or numerical radiation and scattering 
problems. Very few works are found in the literature which 
allow a comparison between the numerical results obtained 
with the source simulation technique and experimental data. 
The contribution of the present work was then to present a 
comparison between numerical and experimental results so 
as to evaluate the practical usefulness of the source simula­
tion technique. An important practical property of the 
source simulation technique is its controlled accuracy: the 
error is directly determined as a discrepancy in the boundary 
conditions on the surface of the body in each specific case. 
This property is very important especially if analytical solu­
tions are not available. The principle of the method is very 
simple. Further research still needs to be done to investigate 
the influence of the type of source, type of surface over 
which the sources are positioned (single-layer method), the 
possible existence of resonance frequencies, and the applica­
bility of the method for more complex surfaces. The main 
drawback of the source simulation technique is the fact that 
rules for the positioning of the source surface are not known 
a prio r i. The positioning of the source surface and in conse­
quence of the sources themselves is based on the experience 
of the programmer.
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