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1. INTRODUCTION
The question of the dimensionality of the 

perceptual vowel space for monophthongs has a long history 
(see [1] for a review). Although three or more formants are 
typically used to synthesize acceptable vowels, under some 
circumstances a smaller number of spectral prominences 
(one or two) can produce acceptable vowel quality. The 
main question we address is: Can a two-dimensional 
perceptual space, corresponding roughly to FI and F2-prime 
adequately represent the perceptual properties of vowels? 
F2-prime is believed by some to result from large-scale 
perceptual integration (e.g., 3.5 Bark 'centers of gravity') of 
spectral energy in the F2 to F4 range [2]. Others are 
skeptical of this notion; see [1]. We sketch below a novel 
method to examine the degree to which a two- or three- 
dimensional space can accurately represent listeners’ 
perception of a large three-formant vowel continuum. Our 
results suggest that no two-dimensional representation 
adequately accounts for listeners’ behavior.

In prior work [3], we modeled the categorization of a large 
(972 stimuli) F1-F2-F3 continuum by 14 speakers of 
English and 14 speakers of Finnish. Briefly, the stimuli 
filled a feasible F1-F2-F3 space of an adult speaker in steps 
of 0.5 Bark on each formant. English speakers responded to 
each stimulus with one of 11 possible vowel choices, 
including the rhotic vowel as in the word her, which is 
characterized by a low F3. Finnish speakers responded with 
one of 8 possible vowel choices, representing the full 
inventory of short monophthongs in Finnish. Details of the 
stimuli and procedures are given in [3], Our prior modeling 
[3] used several fixed representations of the stimuli. 
Notably, a two-dimensional FI by F2-prime representation 
performed markedly worse than F1-F2-F3 in predicting 
listeners’ categorization of the stimuli via logistic 
regression. Although the explicit FI by F2-prime 
representation of Bladon and Fant [2] is clearly inferior to 
the three-formant representation, the more general question 
remains whether some other two-dimensional space is 
adequate.

2. METHOD
The key to our analysis is a neural network 

architecture that is capable of implementing an optimal, 
non-parametric, two-dimensional representation of the

stimulus space. This model is rooted in an input-layer with 
a saturated 'dummy-variable' coding of the 972-point 
stimulus space, i.e. on presentation of stimulus k, the 
activation of input node k is set to 1.0 and activations of all 
971 other nodes are set to 0.0. This input layer fans in to a 
two-node hidden layer. From this two-dimensional 
bottleneck, it then 'fans out' again to a group of 11 vowel 
response output nodes for English and a group of 8 vowel 
output nodes for Finnish. Each group of output nodes is 
provided with a softmax transfer function (see [3] for 
references). This effectively implements a polytomous 
logistic regression of the response patterns (pooled over 
listeners) of each language on a common set of two derived 
stimulus variables. A sketch of the model with a two- 
dimensional hidden layer is shown in Figure 1.
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Fig. 1. Sketch o f two-dimensional bottleneck neural net. The 
bottom input layer represents the stimuli. The middle hidden layer 
represents the two-dimensional reduced space. The top output 
layer represents listeners’ responses.

The weights from the input layer to each hidden unit can be 
viewed as scores on a single dimension and the trained 
weights for each stimulus represent the analog of factor 
scores in multidimensional scaling space of that stimulus. 
Simulations of the two-dimensional structure were run using 
random initial weights. To aid convergence, the initial 
input-to-hidden layer weights were a mixture of 25% 
random normal deviates and 75% standardized (to zero 
mean and unit variance) values of FI to unit D| or 75% 
standardized values of Bladon and Fant’s F2-prime to unit

Canadian Acoustics /  Acoustique canadienne Vol. 31 No. 3 (2003) - 16

mailto:t.nearey@ualberta.ca
mailto:mkiefte@dal.ca


D2. (Frequencies were transformed to Bark before 
standardization). Because of the high dimensionality of the 
problem and the possibility of ‘stalling’, 200 different 
random initializations were run. We report the best results 
of the 200 starts below. A similar set of analyses was run 
with a three-dimensional hidden layer. Here, convergence 
properties were somewhat better, so complete random 
initialization was used with 200 starts.

3. RESULTS
Initial results summarized suggest that two- 

dimensional bottleneck does not provide a very good 
account of listeners' categorization, while a three- 
dimensional hidden layer works quite well.

Table 1. Comparison of goodness of fit of four models. See text.

Model rms% Error Np
I. F12p 9.3% 434.4 51
II. Opt2D 8.3% 338.5 1995
III. F 123 5.3% 204.5 68
IV. Opt3D 4.3% 167.5 2984

Table 1 presents a comparison of four models. Model I, 
F12p represents a simple softmax model with two inputs FI 
and F2-prime. The architecture of the model is equivalent to 
the top two layers of Figure 1, with FI and F2-prime applied 
to the two input nodes. The column labeled rms% shows the 
rms error of predictions compared to observations when 
responses are measured in percent. The column labeled 
Error is the error criterion that was optimized in the 
network fitting process. (This error was calculated on 
normalized proportions of responses, rather than raw 
response counts. If counts had been used, as in the modeling 
in [3], this number would have been approximately 69.5 
times the value shown.) The column labeled Np is the 
number of (non-redundant) free parameters required to fit 
the model. Although some of these numbers are quite large, 
it should be noted that there are 16,524 degrees of freedom 
in the response data. Models I through IV thus exhaust 
about 0.3, 12, 0.4 and 18 percent of the available degrees of 
freedom

Model II represents the optimal two-dimensional solution 
corresponding to the architecture of Figure 1. Comparing 
models II and III, we see that there is only a modest gain of 
about one percentage point in rms error with an additional 
1944 degrees of freedom. Model II represents a baseline 
three-dimensional solution. It is similar to model I except 
that there are three input nodes, corresponding to the 
synthesis control parameters FI, F2 and F3. We see that 
there is about a four-percentage point reduction in rms and 
roughly a halving of the softmax error compared to model I. 
This large gain obtains with only 17 more free parameters. 
Model IV corresponds to an optimal three-dimensional

solution. This model is like that of Figure 1, except that a 
third unit is added to the hidden layer. It is the largest model 
and fits the best of all.

4. DISCUSSION
The fact that the optimal two-dimensional model II 

is superior to the much smaller two-dimensional model I is 
not surprising because of the large increase in the flexibility 
of the model. Similar remarks apply to model IV and model 
III. Deciding whether the enormous increase in degrees of 
freedom is justified for the gains observed constitutes a 
difficult problem in model selection, especially since the 
problem represents a case of repeated measures categorical 
data. However, the comparison between models II and III is 
a much simpler matter. Despite the vastly greater number of 
degrees of freedom available to model II (which enables an 
optimal non-parametric, two-dimensional mapping of the 
stimuli), the two-dimensional bottleneck of the hidden layer 
apparently makes it impossible to provide a good fit to the 
data. The fact that model II provides a substantially poorer 
fit to the responses that the default three-dimensional (FI, 
F2 and F3) representation of model III leaves little doubt 
that the dimensionality of the perceptual space underlying 
vowel perception is greater than two and that no 
modification of the FI by F2-prime space can adequately 
serve as a basis for modeling listeners’ categorization.
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