
M u lti C h a n n e l D ata A c q u is it io n a n d S ig n a l P r o c e s s in g U s in g M A T L A B

S. Bilawchuk and K.R. Fyfe.
aci Acoustical Consultants Inc.,

Suite 107, 9920-63 Ave, Edmonton, Alberta, Canada, T6E 0G9. www.aciacoustical.com

1. INTRODUCTION

With recent advances in digital data acquisition, multi­
channel data acquisition systems for acoustics and
vibrations are more commonplace. There has been an
industry-wide shift from closed box systems with limited
configuration options to PC based systems with numerous
software driven data acquisition choices. These systems,
however, are still relatively expensive and invariably
contain a certain degree o f constraints for both data
acquisition and signal processing. Utilizing engineering
computational program software such as MATLAB [1,2]
enables individuals to customize their multi-channel data
acquisition systems and use a variety o f external hardware,
all for less money than off-the-shelf systems. This paper is
intended to discuss some o f the highlights and pitfalls with
using MATLAB for digital data acquisition and signal
processing.

2. DATA ACQUISITION

The Data Acquisition Toolbox in MATLAB is designed to
work with several hardware devices and offer complete
user control over virtually all data-acquisition parameters.
Variables such as sample rate, sample duration, and
triggering can be easily controlled. Probably the simplest
data acquisition device is the soundcard installed on most
PC’s. This can be used to acquire two channel data, with a
sample rate up to 44.1 kHz with 16-bit resolution. The two
most important things to be aware o f with the sound card
are the fact that it is A/C coupled (i.e. high pass filtered at
about 2 - 3 Hz), and that it has preferred sample rates (i.e. 8
kHz, 10.025 kHz, 22.05 kHz, and 44.1 kHz). Acquiring
data at sample rates other than these produced
unpredictable/un-expected results. It is also important to
consider the ability to sample dual channels simultaneously.
Tests with a common 16-bit SoundBlaster sound card
showed that the time lag between the acquisition on each
channel translates to a much higher frequency than the 44.1
kHz maximum sample rate, and thus will not cause a
problem for signal processing between the two channels.

Various other data acquisition cards are supported by
MATLAB. All work for this paper was done using a
Measurement Computing PC-CARD DAS 16/16-AO which
has either 16 single-ended (common ground) or 8
differential analog inputs as well as several outputs and
digital connections. The connections to the card (single or
double) are VERY important and dependent on the type of
transducers being used and the type o f measurements made
(consult the user manual). Given the varied types of

transducers used for typical acoustic/vibration sensory work,
it was found that differential connections were appropriate.
Although the card has a maximum sample rate o f 200 kHz
for a single channel, as the number o f channels increases, the
maximum sample rate goes down by (essentially) the ratio of
channels. This is because the card uses a multiplexer to
route each channel to a single A/D converter. As the number
of channels increases, this process slows down. More
expensive cards have multiple A/D converters, which allow
for maximum sample rates in each channel regardless o f the
number o f channels.

Using MATLAB, the data is acquired as a large matrix for
each record block. The block length is dependent on the
sample time and duration. Although these can be set to
virtually any value, it is common to use radix 2 (2n) numbers
to take advantage o f faster FFT algorithms [3]. Once the
data is acquired, it must be stored or processed. Refer to the
Appendix for sample data acquisition code. The variable t
stores the time vector for the entire sample length, and the
variable d has the data stored in a matrix with 1 column per
channel.

As with any data acquisition system, an appropriate analog
anti-aliasing low-pass filter is required. There are numerous
filter choices available with specific data acquisition needs
dictating which filter is appropriate. For the purposes of this
paper, an external, switched capacitor filter was used. One
key advantage to this filter is that the cutoff frequencies are
controlled digitally by a variable clock frequency. This can
be used in conjunction with the variable frequency output of
some data acquisition cards to provide an infinitely variable
set of frequencies. For example, when choosing to acquire
the data at a particular sample rate, the computer program
could automatically select the appropriate filter cutoff
frequency and adjust it accordingly.

3. SIGNAL PROCESSING

Once the data has been acquired, it needs to be processed to
obtain the desired form. MATLAB has various
functions/operations built in for signal processing.
Windowing, FFT analysis, cross and auto power spectrum
calculations, coherence, averaging, Lcq measurements,
integration and differentiation are just some of the key
operations which can be done. Each o f these operations are
relatively simple, as illustrated in the sample code for
calculating the cross spectrum and coherence between two
channels, in the Appendix.
Similar operations such as FFT, windowing, and averaging
require equivalent amounts o f code. The key advantage is
that the entire process is comnletelv custom and additional

Canadian Acoustics / Acoustique canadienne Vol. 31 No. 3 (2003) - 68

http://www.aciacoustical.com

features (such as additional channels) are minimal to
incorporate.

Figure 1 shows a simple program written for multi-channel
data acquisition. This program is available for download at
www. aciacoustical. com

One important aspect to consider when using MATLAB is
the process involved in acquiring the data, processing it,
and displaying it. For a “real-time” application each of
these processes needs to be done in succession before the
next sample block can be obtained. Current versions of
MATLAB do not allow for simultaneous operations such as
acquiring the next signal while the previous one is being
processed. Thus, the “real-time” capabilities of the entire
process are limited by the computer processor speed and,
more importantly, the efficiency of the code. Most
applications have been found to be essentially “real-time”
but the process does slow down as more channels are added
and more complicated computations are performed. For
most measurements, where long duration averaging is
required, this has not been a concern. If a continuous data
block is required, the entire process can be expedited by not
analyzing and graphing the results for each data block
sampled and waiting until the end.

4. GRAPHICAL USER INTERFACE

One of the most important features that makes MATLAB
viable for data-acquisition and signal processing is the
ability to write programs with a graphical user interface
(GUI). Having data acquisition parameters, and plotting
displays in the common “Windows” format enables much
more power, flexibility, and “user-friendliness”. This
paper will not digress toward the various methods and
pitfalls o f creating GUI programs, rather the purpose is to
state that with a few extra steps, a more powerful program
for data acquisition can be obtained.

5. REFERENCES

1) MATLAB Data Acquisition Toolbox Version 2.0 Users
Guide, The Mathworks, www.mathworks.com

2) sample MATLAB code can be downloaded at
www.aciacoustical.com

3) Frequency Analysis, Briiel and Kjær. 1987, K. Larsen &
Son A/S

The following is a sample of MATLAB code
ai = analoginput(1mcc',1);
ch = addchannel(ai,[0 1]);
set(ch, 'inputRange',[-5 5]);
set (ai, 'samplerate',1000);
ai.samplespertrigger = 1000*10;
start (ai); [d,t] =■getdata(ai);
stop (ai); delete (ai);

The following is a sample of MATLAB code
Ch_l = fft(d(:,1))/blocksize*2;
Ch_l(1) = Ch_l(1)/2;

Ch_l = Ch_l(1 : (length(Ch_l)/2 + 1

APPENDIX
used to acquire a single data block:
sets up connection to data acquisition card
adds channels 0 and 1 resulting in a total o f 2 channels
sets input range to ±5V
sets sample rate to 1000 Hz
sets sample length to 10 seconds
starts data acquisition and stores data into variables d (data) and t (time)
stops data acquisition and deletes data in "ai" before acquiring next sample block

used to perform the FFT calculation on 1 of the 2 channels
FFTfor Chi with scale correction
Correction for DC Offset

)) ; Storing only the positive frequency components

The following is a sample o f MATLAB code used to calculate auto and cross spectra as well as coherence:
Ch_l ; auto power spectrum fo r Chi (added to previous value)
Ch_2 ; auto power spectrum fo r Ch2 (added to previous value)
Ch_2 ; cross power spectrum between Chi & Ch2 (added to previous value)
Ch_l ; cross power spectrum between Ch2 & Chi (added to previous value)

Frequency response function (HI)
Frequency response function (H2)
Coherence between Chi & Ch2

G_ll = G_ll + conj(Ch_l)
G_22 = G_22 + conj(Ch_2)
G_12 = G_12 + conj(Ch_l)

21 = G_21 + conj(Ch_2)
G_12 ./ G_U;
G 22 ./ G 21;

G_
HI =
H2 =
coh = real(HI ./ H2);

69 - Vol. 31 No. 3 (2003) Canadian Acoustics / Acoustique canadienne

http://www.mathworks.com
http://www.aciacoustical.com

