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a b s t r a c t

In this work, the nonuniqueness problem of solving surface integral equation of acoustic scattering is con
sidered. The solution of the acoustic scattering integral equation is not unique at some frequencies. A unique 
solution can be obtained by adding some constraints to the problem at some interior points of the scatterer. 
The primary difficulty is the lack of formalized method for the selection on the interior points to guarantee 
uniqueness. A simplified method for selecting interior points for CHIEF method is proposed. The new 
augmented surface integral equation is successful in reducing the needed number of points to solve at the 
characteristic frequencies of the scattering problem where a unique solution does not exist. The implementa
tion of the method exploits the earlier computations used in selecting the interior points. Numerical results 
are presented at some characteristic frequencies for an axisymmetric body. A comparitive analysis is also 

presented to evaluate the potential of the proposed method.

r é s u m é

Ce travail, le problème de non unicité en résolvant l ’équation intégrale extérieure de la dispersion acoustique 
est considérée. La solution de l’équation intégrale de dispersion acoustique n ’est pas unique à quelques 
fréquences. Une solution unique peut être obtenue en ajoutant quelques contraintes au problème à quelques 
points intérieurs du diffuseur. La difficulté primaire est le manque de méthode formalisée pour le choix sur 
les points intérieurs pour garantir l ’unicité. On propose une méthode simplifiée pour choisir les points inté
rieurs pour la méthode en CHIEF. La nouvelle équation intégrale extérieure augmentée, prouve le succès en 
réduisant le nombre nécessaire de points en cas de solution aux fréquences caractéristiques du problème de 
dispersion, auquel le problème n ’a pas une solution unique. L’exécution de la méthode exploite les calculs 
précédents utilisés en choisissant les points intérieurs. Des résultats numériques sont présentés à quelques 
fréquences caractéristiques pour un corps axisymmetric. Une analyse de comparaison est également présen
tée pour évaluer le potentiel de la méthode proposée.

1. i n t r o d u c t i o n

Integral equation methods have been used to solve ex
terior acoustic radiation and scattering problems for many 
applications. In these problems, the external pressure is rep
resented in terms of a distribution of an acoustic field on the 
surface of a scatterer or radiator. By forcing this representa
tion to match a specified velocity distribution on the surface, 
an integral for the unknown source strengths was obtained. 
Once the source density is obtained, the pressure at any point 
in the exterior region can be computed. Integral equations of 
this type do not have a solution at the natural frequencies of 
an associated interior Dirichlet problem [1].

The surface Helmholtz integral equation is advanta
geous in that the problem’s dimensionality is reduced by one 
and an infinite domain is transformed to finite boundaries in

which the far-field radiation condition is satisfied. The so
lution of the acoustic (Helmholtz integral) boundary value 
problem is unique for all frequencies [1, 2]. However, the 
standard Helmholtz integral equation fails to yield unique 
solutions at the natural frequencies. For direct formulations, 
both the Dirichlet and Nuemann problems have the same 
characteristic frequencies as the eigen frequencies of the in
terior Dirichlet problem [5]. This problem is one of nonu
niqueness rather than nonexistence [1]. Non-uniqueness is 
a purely mathematical problem arising from the breakdown 
of boundary integral representation rather than from the na
ture of the physical problem [5, 3]. For solving this problem, 
two main approaches have been followed; the first method is 
called CHIEF, the combined Helmholtz integral equation ap
proach, which is perhaps the most widely used in engineering 
applications. The second method combines the Helmholtz 
integral equation with its normal derivative.

5 - Vol. 32 No. 1 (2004) Canadian Acoustics / Acoustique canadienne



The CHIEF method uses the surface Helmholtz 
integral equation, combined with the corresponding interior 
Helmholtz integral equation, to form over-determined 
system o f equations which can then be solved. This method 
may not function properly at the characteristic frequencies 
when some o f the interior points coincide with a nodal 
surface of the related interior problems. More CHIEF 
points may be required to yield unique solutions at the 
characteristic frequencies. Therefore, in this method, the 
number and location o f CHIEF points must be effectively 
selected, particularly in the high frequency range. The 
second method is severely limited in that the hyper-singular 
integral must be evaluated and so numerical difficulties 
arise. The tangential derivative formulation has been 
derived to regularize the highly singular kernels [4].

In general, a comparison o f these two methods shows 
that they introduce their own particular complications [4]. 
Many enhancements have already been introduced to both 
these methods. Benthien and Schenck, in a recent survey, 
reviewed various methods for handling the nonexistence 
and non-uniqueness [1].

The CHIEF method is the most extensively used in 
engineering applications [5]. A potential problem with this 
approach is the choice o f interior points for the 
supplemental equations. The selected interior points must 
not be a nodal point o f the corresponding interior eigen 
mode. It has been demonstrated that it is only needed one 
non-nodal point (good) to establish a unique solution [2]. 
A survey on the location o f “good” points is, also, found in 
Reference 2. The primary difficulty is the lack of 
formalized method for the selection on the interior points to 
guarantee uniqueness [6]. Despite that there is no 
systematic way to select the interior points in CHIEF 
method, the selection o f effective interior points is not 
difficult. Several decades o f practical experience has 
shown that effective interior points are not difficult to 
choose and that the CHIEF method is very robust [1].

In this work a monitoring method is proposed to test 
the effectiveness o f interior points for CHIEF. The 
proposed method is simple, needs neither rigorous 
mathematical formulations nor significant computational 
burden. The proposed method exploits a non-unique 
solution at the required characteristic frequency on the 
scatterer surface. The non-unique solution, is, then used to 
compute the field at some interior points. The computed 
field strengths can monitor any nodal points using a simple 
criterion. The matrix used in the first run is, then, 
augmented with non-nodal interior points to give the over
determined system o f equations which can be solved for 
the unique surface field.

2. INTEGRAL EQUATION DERIVATION

V 2¥ r , t )  =
1  Ô 2 $ ( r , t )

c 2 Ô t 2
(1)

where, V denotes the Laplacian operator in three 
dimensions. ^ the velocity potential at r  and t. c is the 
speed o f sound in the medium at the equilibrium state. The 
velocity potential ^ is

U =  V ^  (2)

It is common practice to express the velocity potential as

<► =  <► ' +  <► ̂  (3)

where and are the incident and the scattered velocity 
potentials. The excess pressure can be written as

P = - P o — (4)

where po is the density o f the fluid at the equilibrium state. 
It follows that,

I . s p  = p  + p (5)

where, p ' and p s are the incident and the scattered pressures. 
The differential equation for time-harmonic waves with a 

time factor e'a  takes the form

( V 2 + k 2 )$ = 0 (6)

where, k= a/c  is the wave number, and a  the angular 
frequency. Accordingly, equation (4) becomes

p  = - 'Po (7)

At the surface o f a hard scatterer, the normal component 
u.n of the fluid particle velocity u is zero; so

Ô̂  
Ôn

= 0 (8)

where n is the unit vector normal to the surface o f the 
scatterer body and into the surrounding space, and n  is the 
distance along the external normal vector n. At the surface 
of a soft scatterer, the excess pressure is zero, (i.e.),

The governing equation for the propagation o f acoustic 
waves through an unbounded homogenous medium is 
described by the wave equation

(9)

Canadian Acoustics / Acoustique canadienne Vol. 32 No. 1 (2004) - 6



Equations 8 and 9 represent the Neumann and 
Dirichlet boundary conditions of the differential equation, 
Equation 1, respectively.

The equivalent boundary integral formulation of 
Equation 6 is valid for an acoustic medium B exterior to a 
finite body B with surface S and a unit normal n, pointing 
into B . The body is submerged into an infinite linear 
acoustic medium. When a harmonic acoustic wave ^  
impinges upon the body B, the resulting integral equation 
for smooth boundaries has the following form.

C(P) 0(P) = | ( ^ Q )
d¥ (P,Q)

d

- V(P ,Q )â âQ )  dSg + 4 n f (P )

(10)

Equation 10 is the surface Helmholtz integral equation, 
where, ^(P) = ^(rP) eimt at point P  and Q is a point on the 
body surface.

The free-space Green’s function y  for the Helmholtz 
wave is given by

y(P,Q) -  e-ikR /R (11)

3. DESINGULARIZATION

We consider here only the fully axisymmetric 
scattering case, (i.e), both the body shape and the acoustic 
variables are independent of the angle of the revolution of 
the body. For scattering, this implies that the direction of 
the incident wave must coincide with the axis of revolution 
of the body. This simplification is used to test the proposed 
nonuniqueness solution. The singularity regularization is 
similar to that used in Seybert and Ranganathan [2]. This 
formulation is summarized in the next section.

For an axisymmetric body, the integrals in Equation 10 
can be rewritten using a cylindrical coordinate system (p, 
0, z) as

\L m )

2n

\
ikR(P,Q)

dn V R (P ,Q )
d 0 (Q ) p (Q )d L (Q )

(15)

1
and

d ¥Q )
dn

2 n , -ikR( P,Q)

R(P,Q)
d0(Q) p(Q)dL(Q)

where, R is the distance between the field point P  and a 
source point Q, and n is the outward directed normal at Q. 
The distance is expressed, vectorially, as

R rp (12)

where, rp is the vector to point P  from the origin and 
similarly for Q . The coefficient C(P) is defined at P  on S 
provided that there is a unique tangent to S at such a P, as

C(P) -

0  for P g  B 

4n for P  g  B 

2n for P  g  S

(13)

When P  occupies a point on the surface S , there is no 
unique tangent plane (e.g., when P  is on an edge of a sharp 
corner), C(P), then relates to the solid angle a  by [4],

C(P) = 1 - a  /  4n

. , â 
= 4n  +

1

R(P,Q)J
dS (14)

(16)

where, the axisymmetric assumption implies that the field 
^(P) and its derivative are independent of 0(P) and the 
differential area element is defined as

dS(Q) = p(Q ) d0(Q) dL(Q) (17)

where, dL(Q) is the differential length of the generator L 
of the body at a surface point Q, where Q now is 
interpreted as an arbitrary point on L only.

The evaluation of the integrands in Equations 15 and 
16 requires the evaluation of the following integrals

' ■  - n R(P,Q)
d0(Q)

(18)

12 -

2 n

Iâ ( e

dn V R(P,Q)
d0(Q)

(19)

These integrals are singular and the singularities can be 
removed by using the following regularization scheme.

0

e

0

0

0
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Ij = IÜ! + IEj 

where.

(20) N

I G  —■ — Jl
and

2* f  e -ikR(P.Q) _  ^

R ( P , Q )
d d ( Q )

(21)

IE' -  Jf WPR ( P , Q ) )
d Q (Q )

(22)

The integrand in Equation 21 is nonsingular. However. it 
can be evaluated numerically using a simple Gaussian 
quadrature formula. The other integrand defined in 
Equation 22 can be reduced to elliptic integral formulation 
and evaluated using standard algorithms. Elliptic integral 
algorithms are available in the numerical toolboxes on most 
computers [8].

A similar procedure has been used in Reference 2 to 
evaluate the integrand in Equation 19.

I2 = IG2 + IE2

where.

(23)

I G 2 - J an V R ( P , Q )
dQ (Q )

(24)

and
27

IE  2 -
1

an V R ( P ,  Q ) )
d O ( Q )

(25)

4. NUMERICAL FORMULATION

Substituting Equations 21 thru’ 25 into Equation 10 at 
different node points ip and assuming the index of surface 
elements iq, the following discretized form of Equation 10. 
for N nodes on the surface. can be written as

A ( —  B (26)

where. A is an NxN matrix. (  and B are N  vectors. An

nexample for the hard scatterer where ---- — 0 is

A ( i P,iq)  — X I 1p ( i q) d L ( i q )  ip ^  iq (27)
iq —1

N

A( ip ,ip )  — X I  P (  lq)dL( iq)  _ 2 7  lp — lq (28)

iq—1
and

B ( i p)  — _ 4 l ( i p )  V i p — L N (29)

where. ^ is an N  -dimension vector representing the field 
strength on the scatterer surface and is the incident 
field.

5. NON-UNIQUENESS ISSUES

CHIEF method is used to solve the acoustic scattering 
problem at the natural frequency. Nonuniqueness 
manifests itself numerically by producing a nearly singular 
coefficient matrix A. At these points. the field strength q.h(ip) 
is forced to vanish. The interior integral relations are used 
as constraints that must be satisfied along with the original 
formulation. Equation 29 is. then. augmented by additional 
equations at interior points. These equations differ from 
Equation 29 in that the additional point doesn’t lie on the 
surface. Thus. no singularity is found and the field strength 
is zero so the 2nin R.H.S of Equation 29 is dropped.

For axisymmetric bodies. it was found that the axis is a 
good place to put the interior points [1]. The selection of 
interior points is based on evaluating the field at some 
interior points on the axis of symmetry and select only 
those points where the field doesn’t vanish. within a preset 
accuracy [6]. Augmenting the N  discretized equations in 
Equation 26 by M interior equations results in an 
overdetermined system of equations which can be solved 
by the least squares method [1]. The nonuniqueness can be 
overcome using a simple method based on the CHIEF 
criterion. The proposed method exploits a non-unique 
solution at the required characteristic frequency on the 
scatterer surface. The non-unique solution is. then. used to 
compute the field at some interior points. The computed 
field strengths can monitor any nodal points using a simple 
criterion based on that the point of larger field strength is 
far from nodal points. The matrix used in the first run is. 
then. augmented with non-nodal interior points to give the 
over-determined system of equations which can be solved 
for the unique surface field.

0

0

0

0
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6. NUMERICAL RESULTS

The numerical example, presented here, is the 
scattering of a plane incident wave by a rigid sphere and is 
solved at some characteristic frequencies of the problem. 
The incoming unit plane wave travels toward the scatterer 
along the positive direction of z-axis in the cylindrical 
coordinates described as e 'k . The surface field ^ is 
computed using the proposed method. The results will be 
verified by comparing with the analytical solution. The 
benefits of the method will be validated by comparing with 
the results of CHIEF method with multiple points. On the 
surface of a hard sphere, the analytical solution of Equation 
10 for plane incident wave can be expressed as [8].

n=0

1 .PJcos 0)

<30)

where, ^ is the total field as defined in (3) and 0 is the 
incidence angle and it has been taken to be zero in this 
application. Pn is the Legender polynomial of order n and 
hn is the spherical Hankel function. k  is the wave number 
and a is the radius of the sphere.

Table.1 Field points at different interior points

Normalized interior points 
z-component

Verified Field

0.90476 0.396
0.80952 0.816
0.71429 1.194
0.61905 1.480
0.52381 1.630
0.42857 1.620
0.33333 1.441
0.23810 1.108
0.14286 0.656
0.04762 0.153
-0.04762 0.433
-0.14286 0.929
-0.23810 1.333
-0.33333 1.602
-0.42857 1.711
-0.52381 1.659
-0.61905 1.460
-0.71429 1.147
-0.80952 0.763
-0.90476 0.351

The performance of each method will be evaluated 
based on two factors; the computational time and accuracy 
relative to the analytical solution.

The compared results are taken at the characteristic 
frequencies; ka= 4.4934 which is a fictitious frequency of 
the normal derivative boundary integral equations [3]. The 
system of equations is solved numerically using least- 
squares algorithm which is available in [8].

In applying the proposed method, the computations of 
the non-overdetrmined system of equations are saved by 
retaining its matrix into memory after monitoring the 
proposed CHIEF points. The selected point based on the 
proposed criterion is used to add, just, one matrix row and 
then the least-squares method is applied to the over
determined system of equations.

Table. 1 shows the verified field at different interior 
points to select the appropriate one for CHIEF analysis. 
The field verification is computed through non
overdetermined system of equation for the integral 
equation for the characteristic frequency ka=4.4934. These 
points are chosen with constant step on the z-axis of 
symmetry in cylindrical coordinates. The incident field is 
propagating along the z-direction. According to the 
proposed method of selection, the field at the candidate 
point should exceed a certain threshold. Different trials 
showed that the threshold > 0.5 is sufficient.

According to the above discussion, the most 
appropriate point, which has the most far field value from 
zero, is z=0.524. Figure 1 shows a comparison between 
the scattered field distribution on the surface computed 
without any correction and the analytical solution. Figure 2 
shows a comparison between the scattered field distribution 
on the surface computed using the proposed method, 
CHIEF with multiple points and the analytical solution.

Figures 3-6 show different comparisons between the 
analytical solution and different selected CHIEF points 
according to the above criterion. These comparisons show 
that the selected points serve to adjust the solution in its 
neighborhood range, since negative points show closer 
result to the analytical solution around its neighborhood. 
Applying the method with two points on both sides of the 
axes of symmetry shows the most accurate result within 
these comparisons. Adding, more points don’t add more 
accuracy as shown in Figure 3.

CPU time comparison shows that each additional 
CHIEF point adds about 5% of the whole process time to 
be processed. The comparison has been conducted under 
MATLAB 5.2 on PC-233MHz for 10 surface points and 10 
additional interior points.
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Surface field for hard sphere scattering at k£F4.4334

Suface pcirt

Figure 1. Comparison between the analytical solution at 
the characteristic frequency ka=4.4934 and the solution 
without CHIEF correction.

Scattered Field ka=4.4934

Figure 2. Comparison between different solution 
methods.

Suface field ka=4.4934

Surface point

Figure 3. Comparison between analytical solution and a 
numerical solution at selected point of z=0.52 0.43 and 
0.33 respectively.

Suface field ka=4.49G4

Suface pant

Figure 4. Comparison between analytical solution and 
a numerical solution at selected point of z=0.62, 0.52, 

0.43, -0.62, -0.52 and - 0.43 respectively.
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S f c e  field k=F44934 7. Error Analysis

q I i______ i______ i______ i______ i______ i______ i______ i______

5 10 15 20 25 30 35 40 45 

Sufæ e part

Figure 5. Comparison between analytical solution and 
a numerical solution at selected point of z= 0.52, 0.43, - 

0.52 and - 0.43 respectively.

S u fee  field kEF4.4834

Slifece part

Figure 6. Comparison between analytical solution and 
a numerical solution at selected point of z= 0.52, 0.43, 

and -0.52 respectively.

The results obtained in the previous section are then 
compared based on the error from analytical solution. The 
error is defined as

E rro r = $num - fana (31)

where, </)num is the resulted solution form Equation 29 and 
faana is the analytical solution given in Equation 30.

Figure 7 shows a comparison between the error trends 
of the numerical solutions using 10 CHIEF-points and one 
CHIEF-point at z = 0.52 as selected by the discussed 
criterion in section 5 as an extreme choice. Figure 8 shows 
another comparison between 10 points solution and the 
solution of 3-points shown in Figure 6.

The energy error is also compared for different 
CHIEF-point selections in Table 2. The energy error is 
defined as the ratio between the energy of the error to the 
energy of the analytical solution as

r  r  W num $ a n a \
Energy E r ro r  ra tio  =  ----- r------ jj-----  (32)

\$ana  ||

Table.2 Energy Error Ratio for different Chief-point 
selections.

# Chief Points 10 6 3 1
Energy Error Ratio 0.0448 0.0456 0.0550 0.0592

Table 2 shows the effect of CHIEF-points on the accuracy 
of the numerical solution. According to these results, the 
trade-off remains between less accuracy gain as shown in 
Table 2, and Figures 1thru’ 8 and saving computational 
cost by reducing the solution matrix as discussed in Section 
6.
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Error analysis

Surface point

Figure 7. An error comparison between one and 10 
CHIEF-point solutions.

Error snelysis

SLrface part

Figure 8. An error comparison between 3 and 10 
CHIEF-point solutions.

8. CONCLUSIONS

This work considered the problem of selecting a

non-nodal interior point for CHIEF method. This method is 
essential for solving the acoustic scattering problem at the 
characteristic frequencies of such problems. The non
uniqueness needed only one interior additional field 
equation [1]. The selection method, proposed in this work, 
provided a systematic way which saves both computational 
time and memory. The results showed convenience with 
the analytical solution and the traditional solution using 
multiple interior constraint equations. Error analysis 
showed that more internal CHIEF-points do not improve 
accuracy while fewer points reduced the computation time. 
The proposed method for selecting such points helped in 
reducing that number. According to the results, the trade
off still remains between less accuracy gain and saving 
computational cost by reducing the solution matrix.
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