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1. i n t r o d u c t i o n

The 2003 Workshop on Detection and Localization 
o f Marine Mammals Using Passive Acoustics was held in 
Dartmouth, NS, Canada, 19-21 November 2003.

The main objective of this workshop was to provide a 
forum at which interested parties could compare their detection 
and localization algorithms with those of others, identify the 
advantages and limitations of the various techniques, as well 
as their relative accuracy and efficiency. For this purpose, 
a common dataset was made available to the participants 
by DRDC Atlantic and Dalhousie University. After initial 
distribution, the Cornell Laboratory of Ornithology offered 
an additional dataset to expand the base for detection 
algorithms. These datasets are described in detail in these 
proceedings.

The workshop was divided into four sessions: background 
presentations, detection and classification, localization, 
and discussion periods. The background presentations 
provided examples of passive detection and localization 
for the purpose of species conservation or mitigation. The 
participants presented their algorithms during the detection 
and localization sessions. During the discussion periods, 
participants compared results obtained from the workshop 
datasets, different detection and localization technologies, 
and the possibilities for automation and future collaboration. 
This short paper recaps the techniques that were presented, 
as an introduction to the papers that were submitted in these 
proceedings. It also summarizes the discussions, and some of 
the highlights from the workshop.

2. b a c k g r o u n d  p a p e r s

Angela d’Amico (Space and Naval Warfare Systems 
Command) had been invited to give the keynote address of 
this workshop but was unable to attend, and her presentation 
was given by Robert Gisiner (Office of Naval Research). 
Their presentation [1] reviewed the experience gained by the 
SACLANT Undersea Research Centre (now NATO URC) on 
visual and acoustic cetacean surveys in the Ligurian Sea, and 
discussed the benefits and limitations of both techniques.

Since the two datasets offered to the workshop 
participants were based on sounds from the endangered North 
Atlantic right whale (Eubalaena Glacialis), Douglas Gillespie 
(International Fund for Animal Welfare) put the right whale

conservation effort into perspective by describing an acoustic 
detection system that is being developed for the purpose 
of managing the species. The paper was submitted to these 
proceedings by Moscrop et al [2]. Zimmer et al. [3] from the 
NATO URC discussed how data from various sources, in this 
case visual, acoustic and tag data, can be merged together to 
reconstruct sperm whale tracks in three dimensions. Finally, 
Vagle and Ford [4] discussed a passive acoustic system that 
is being developed for the purpose of detecting baleen and 
killer whales on the Canadian west coast.

3. d e t e c t i o n  & c l a s s i f i c a t i o n

3.1 Techniques

Nine papers were presented on the topics of detection and 
classification, and more algorithms were presented during the 
localization session. All but two algorithms were based on 
frequency/time analyses; the other two techniques were time 
based.

The frequency/time techniques generally work 
with an energy detector that exploits the frequency/time 
characteristics of the signal. Once a detection is made, the 
signal is parameterized using specific features. The signal is 
then classified by decisions based on these features.

The classification algorithms of Gillespie [5] and 
Mellinger [6] were right-whale specific. Gillespie [5] used an 
edge detector on the smoothed spectrogram of vocalizations, 
which are then parameterized using features such as start and 
stop frequency, signal duration, etc. Mellinger [6] compared 
two algorithms: neural networks and spectrogram correlation 
with a synthetic kernel. Their results for right whale 
vocalizations showed that the neural net technique worked 
best.

The technique of Matthews [7] is broader in classification 
as it is aimed at frequency-modulated vocalizations, which 
are broken into sequences of linear chirps, and parameterized 
by features such as chirp rate, start frequency, etc. Other 
techniques were aimed at odontocete echolocation signals 
such as Adam et al.'s wavelet-based algorithm [8]. Using 
wavelets is a way to adapt the time-frequency resolution to 
the signal to be detected. The technique was tested on sperm 
whale clicks, and is expected to be robust for signals with low 
signal-to-noise ratios.

Harland and Armstrong [9] presented a suite of
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algorithms aimed at the general detection of mysticetes and 
odontocetes. Their normalized spectrograms are converted to 
binary spectrograms based on a selected threshold, and signal 
boundaries are defined using an 8-connectivity neighbourhood 
algorithm. The signals are parameterized with features such as 
spectral slope, minimum and maximum frequency, duration, 
etc. depending on the category of sound to be identified: low 
or high frequency echolocation calls, low or high frequency 
mysticete tonals, or odontocete tonals. Their algorithms can 
be tuned for specific species.

The technique of van IJsselmuide and Beerens [10], 
which is also aimed at general detection, uses normalized 
lofargrams from a broadband beamformer. A Page’s test with 
a power-law integrator isolates data that are believed to be 
signal free, and defines the signal’s start and finish times. 
Signal clusters are parameterized with a pattern recognition 
algorithm based on signal frequency, duration, etc.

The two time-based techniques were those of LaCour 
and Linford [11] and Johannson and White [12]. The LaCour 
and Linford technique is based on independent component 
analysis. The hypothesis is that whale sounds are non- 
Gaussian and statistically independent, and this is used 
as a detection statistic. Johansson and White’s technique 
is based on parametric modeling, using AutoRegressive- 
Moving-Average (ARMA) models which are appropriate 
for narrowband signals in noise. The sample-by-sample 
processing can be implemented for real-time detection.

3.2 Detection results and algorithms review

Three of the workshop datasets were available to 
test algorithms with: a 20-min sample from the DRDC/ 
Dalhousie dataset, and the two extensive datasets from 
Cornell. The participants were requested to provide the 
following information:

• relative time of detection, classification of sound;
• basis of classification criteria;
• pros and cons of criteria.

Unfortunately, participants selected different subsets of 
these datasets, and answered the questions differently. Since 
the datasets contained mainly right whale sounds, some of 
the algorithms were tuned specifically for right whales while 
others were for general detection. Thus, the definition of a 
“detection” was not consistent amongst participants.

It was recommended that future workshops use a more 
stringent definition in terms of “probability of detection” and 
“probability of false alarms”, such as a Receiver Operating 
Characteristic (ROC) curve. Douglas Gillespie (IFAW) 
suggested that two sets of data be provided to the participants: 
one with human browser information so that people can tune 
their detectors, and a second to serve as a blind test set with 
the “truth” only provided at the workshop.

It was mentioned during the discussion that it is difficult 
with marine mammals to establish the true number ofproperly-
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identified vocalizations, so that plausible probabilities of 
detection and false alarms cannot be readily established. 
Human classifiers are relied upon to calibrate a training 
set, but there is variability even within human classifiers. 
The quality of a training set or uncertainty in classification 
will affect probabilities of detection and false alarms. It was 
suggested that perhaps more biologists are needed to tell the 
acousticians what the calls are and how useful they are.

3.3 General comments

The most rugged algorithms are species-specific: the 
more you know about the species you are trying to detect 
and about the local environment (including the species 
which generate false alarms), the better your algorithms can 
become.

Energy detectors need good signal-to-noise ratios, 
therefore noise reduction techniques or the use of a noise 
adaptive threshold, are important. Additional ways to simplify 
the signals, such as using binary spectra or defining calls with 
an edge detector, help classification and make the information 
easier to compress.

Noise removal, whether through adaptive noise removal 
techniques, equalization filters, etc., is important and needs 
to be documented. Noise removal may be done before a 
detection to improve detection rate, or after the detection to 
reduce impact on the classification (i.e. some signal features 
could be removed as well with the noise removal techniques). 
There are potential problems depending on the type of signal 
(tonal-vs.-broadband), and the technique. This topic may be 
worth a second look at a future workshop.

Time-based techniques have a strong advantage in 
detecting overlapping signals and dealing with signals of 
variable duration, but they may need to work jointly with other 
algorithms to strengthen their classification capabilities.

4. LOCALIZATION

4.1 Techniques

Twelve papers were presented on the topic of localization, 
and the techniques used fall under the general headings of 
hyperbolic fixing, optimization, model-based approaches, 
and bearing triangulation.

Hyperbolic fixing is based on the intersections of 
constant arrival time difference hyperbolae for the receiver 
pairs in an array. Simard et al. [13], Laurinolli and Hay [14], 
Munger [15] and Wahlberg [16] all use hyperbolic fixing, but 
employ different techniques to estimate the time differences. 
Simard et al. use both a filtered waveform cross-correlation 
and a spectrogram cross-coincidence (overlapping pixels on 
a binary spectrum). Munger uses cross-correlation with a 
synthetic kernel. Laurinolli and Hay use spectrogram cross
correlation. Wahlberg uses cross-correlation in the time 
domain.

Optimization techniques home in on a position by
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minimizing the overall error based on pre-defined criteria. 
Simons et al. [17] use hyperbolic fixing to obtain a first 
estimate, followed by an iterative process to optimize the 
solution of the linearized relative travel time equations. 
Desharnais et al. [18] use an optimization technique based on 
a downhill simplex algorithm. The full sound speed profile 
was used for the 2000 workshop dataset, but a constant sound 
speed was required to resolve the 2002 dataset.

Several talks described model-based approaches to 
localization. Morrissey et al. [19] used the Marine Mammal 
Monitoring on Navy Ranges (M3R) toolset for passive 
detection, localization, and tracking o f marine mammals, 
which has the potential to use shallow water algorithms 
such as matched-field tracking or shallow-water path-based 
tracking algorithms. They used a direct path assumption to 
solve the workshop dataset.

Wiggins et a l. [20] use a Pekeris-type normal mode 
model to determine range from the mode-dependent group 
velocities. The method provides both source range and depth 
estimates from a single sensor. Tiemann and Porter [21] use 
a ray-tracing model (Bellhop) with Gaussian beam-spreading 
to include indirect paths in the location estimates. Like the 
hyperbolic technique, locations are determined from pair
wise differences in arrival times among the array elements. 
Localization estimates are 3D and include a maximum 
likelihood score. Laplanche et al. [22] localize the depth of 
sperm whale clicks using sea surface- and bottom-reflected 
signals detected on a single hydrophone and ray-tracing to 
construct a virtual line array.

Bearings from DIFAR sensors are used by both Greene 
et al. [23] and Mcdonald [24] to determine 2D positions. The 
technique has the advantage of not depending on a constant 
sound speed approximation, and is not affected by multipath. 
The same can be said for techniques that use bearings from 
other types o f sensors, such as towed array beamforming. 
Zimmer et al. described such data in their presentation [3].

4.2 Results

The localization results obtained by participants for 
using the workshop DRDC/Dalhousie datasets are shown in 
Fig. 1 (2002) and Fig. 2 (2000). Most authors used a constant 
sound speed assumption, as listed in Table 1.

The localizations plotted in Figs. 1 and 2 do not consider 
the errors, or differences due to the detection and localization 
algorithms. Comparisons should therefore be made carefully. 
Nevertheless, it is good news that the localizations obtained 
by the different groups using the 2002 data are mainly within 
1.5 km of each other, for the sounds positioned within or near 
the OBH array, which spans over 14 km. For the two whales 
positioned approximately 35 km south o f the central OBH, 
the localizations spread over 7 and 4 km, or approximately 
12-20% o f the range. Though the nearest positions are 
Laurinolli’s and are based on the slowest sound speed, the 
farthest positions are not those based on the highest sound 
speed. Since no direct path exists between these two southern 
locations and the individual OBHs, all results for these two
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Fig. 1. 2002 results: Laurinolli and Hay (x); Simard et al., 
spectrum coincidence(); Simard et al., cross-correlation(*); 
Morrissey et al. (+); Simons et al. (0); Desharnais et al. (A). 

Shaded circles indicate the OBH positions.

whale positions could be overestimated. Whichever speed is 
closest to an average group velocity (likely lower than the 
average sound speed) for these sounds should lead to the 
most accurate answer for the two farthest sources.

Table 1. Sound speed used by authors

Authors Sound speed [m/s]

Yr2002 Yr2000

Laurinolli and Hay 1485. —

Simard et al. 1491. 1491.
Morrissey et al. 1500. 1500.

Simons et al. 1492. -
Desharnais et al. 1499. full sound speed profile

The year 2000 calibration dataset consisted o f right whale 
playbacks transmitted with a projector lowered into the water
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Fig. 2. 2000 results: Simard et al., spectrum coincidence ();
Morrissey et al., (+); Desharnais et al., (A); location of the 

RHIB (0).

from a rigid-hull inflatable boat (RHIB). These transmissions 
were made by Susan Parks (Woods Hole Oceanographic 
Institute), from a sound file provided by Scott Kraus, of the 
New England Aquarium. Unfortunately, the playback tapes 
were not available when the dataset was prepared for the 
workshop. As a consequence, the vocalizations that were 
picked from the playback recordings on the OBHs were not 
confirmed playback sounds. Fig. 2 shows that most authors 
localized the sounds 250 to 300 m from the known RHIB 
positions. It is possible that the sounds selected for the 
calibration dataset were actually right whale vocalizations, 
as opposed to sounds from the playbacks. However, the 
OBH positions in this case were spread over 8 km, and the 
localizations were roughly in the middle of the pattern. A 250 
to 300-m error is consistent with the differences observed 
between authors for the 2002 dataset. Also, the localizations 
appear to track the RHIB drift. This may indicate that the 
sounds were truly from the playback recordings, and that the 
error represents the accuracy of the localization techniques in 
this environment.

4.3 Errors

to estimate the relative contribution to the location error 
from uncertainties in sound speed, arrival time difference, 
and hydrophone position, and conclude for the 2002 Bay of 
Fundy data set that location error was primarily determined 
by uncertainty in the relative arrival times. Wahlberg uses 
the Yr2000 data set to investigate the location error obtained 
with both linear and non-linear error propagation methods. 
Input variables are allowed to vary within their specified 
error range, and the probable location determined within the 
overlap area of clouds of points for different sub-arrays, with 
a specified likelihood. Wahlberg concludes that the non-linear 
method gives more reasonable error estimates.

Among the model-based techniques, Tiemann and 
Porter construct an ambiguity surface by using ray-tracing 
methods to allow for uncertainties in arrival time. The source 
location is the maximum likelihood position on the ambiguity 
surface, and both the magnitude and shape of the likelihood 
peak represent measures of the location error. Laplanche et 
al. estimate depth error analytically, by assuming that the 
input variables (arrival time, water depth, sound speed) are 
Gaussian-distributed random variables.

Error is also related to array design and to the environment. 
Localization at ranges greater than the array aperture has 
obvious value but, as Figure 1 indicates, comes at the price of 
larger errors. The spread among the points at the lower right 
in Figure 1 is due mainly to the small angle of intersection 
between hyperbolae at long range. However, Chapman [25] 
points out that for a hydrophone mounted near the seabed, 
the direct and bottom-reflected paths arrive at very similar 
times but with different phases. Thus, interference between 
the two paths can occur, and sound following an indirect path 
may have a larger amplitude depending upon range, water 
depth, and the sound speed profile. In this case the direct path 
assumption would be flawed, and would lead to a localization 
bias. Ray-tracing models (e.g., Tiemann and Porter), which 
take the sound speed profile and bathymetry into account 
and include both the direct and indirect paths, provide one 
approach to extending the localization range of an array. 
When dispersive effects are apparent in the received sounds, 
normal-mode models (e.g., Wiggins et al.) provide another.

Direct comparison of the localization accuracy of the 
different algorithms and techniques is not attempted here, in 
part because the different papers use different measures of 
error, and we have no independently verified locations.

Within the context of the workshop data set, 
unambiguously-coded signals from a source at known 
locations within and around the array would have provided 
independent measures of absolute accuracy and precision, but 
were not available. For the hyperbolic method, the simplest 
measure of error is the statistical spread among the hyperbolae 
intersections (i.e., the precision of the estimate). Simons 
et al. determine 95% confidence ellipses, representing the 
precision envelope, from the covariance matrix of the time 
difference equations linearized about a first-guess position. 
In addition, Simons et al. carry out Monte Carlo simulations

5. DISCUSSION TOPICS

The workshop hosted four discussion periods, and 
it is not the intention of this paper to summarize all of the 
points raised. Those relevant to detection, classification 
and localization are included in the summaries above. The 
participants also exchanged views on automation and on 
collaboration opportunities, including sharing of algorithms, 
data, and equipment.

5.1 Automation

Automating detection and classification is a case-specific 
compromise between probability of detection and false alarm
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rate. This trade-off affects the choice of algorithm, as well as 
the amount o f supporting environmental information that is 
required as input into the system. The automation process is 
also different depending on whether localization is required 
or only a presence/absence decision. Success will depend 
largely on the species to detect, and the knowledge available 
for the local environment.

Contextual information (such as source bearing) can 
be imbedded in a mature system to further improve its 
performance. This lack o f contextual information in an 
automated system has been identified by one ofthe participants 
as the biggest impediment to full automation. Multiple target 
tracking is also required, but the computational cost may be 
too high.

Data reduction may be required for transmission from 
a remote location, or for localization with a sparse array of 
sensors with limited communication abilities. But how do 
you characterize your signal detected so that you can transmit 
limited information for future localization, while preserving 
enough information to identify the same signal recorded on 
other sensors? This ability relies heavily on the quality and 
variety o f the training sets used for the development of the 
automatic system.

5.2 Future collaboration: Data/algorithm/equipment
sharing and development.

There are a few repositories o f marine mammal sound 
data, such as the Macauley Library o f Natural Sounds at the 
Cornell Laboratory o f Ornithology. This or other web sites 
could have the ability to provide shareable algorithms also, 
and this should be encouraged.

The calibration dataset was in our view one of the 
factors which generated widespread response to the call for 
participation in the workshop. However, the dataset had to 
be assembled in a hurry, and did have flaws: e.g. the original 
playback tape was not available. The need for a high quality 
calibration dataset remains, such as controlled data from an 
acoustic range.

6. CONCLUSIONS

Advertisement for this workshop was done mainly 
through word-of-mouth and email forwarding. Yet, it 
attracted over fifty participants from eight countries. This by 
itself demonstrates how active this research community is, 
and how relevant these specialist meetings are.

We touched the tip ofthe iceberg. Many topics, techniques 
and algorithms were not discussed during this first meeting, 
and participants felt that a follow-on workshop would be 
welcomed. Olivier Adam o f LiiA - iSnS, a laboratory of 
the Université Paris 12 (www.liia-paris 12.net) is presently 
gauging interest for a second Workshop, which would be 
organized jointly with the Centres d ’Études Biologiques de 
Chizé (CEBC), a laboratory o f the Centre National de la

Recherche Scientifique (www.cebc.cnrs.fr). This workshop 
could be hosted in Monaco, October 2005.

Meanwhile, the datasets that were made available for the 
2003 Workshop are still available for researchers who want 
to benchmark their algorithms to those o f others. We hope 
that this first experience will continue to be built on.
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