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a b s t r a c t

Many cetacean vocalisations are tonal and most are frequency-modulated. The detection algorithm 
presented here breaks the frequency contour into a sequence of elements. Each element is sufficiently short 
that a linear approximation to the frequency contour can be made. In this way the problem is simplified 
from that of detection of an unknown signal, to the detection of a known signal (a linear chirp) with 
unknown parameters. The method of estimation is based on maximum likelihood, and the start frequency, 
chirp rate and amplitude of each element are estimated. Further analysis is then carried out on groups of 
concatenated chirps (i.e. calls) to classify them.

Results are given on performance for the supplied test recording and for synthetic signals in white noise. 
The pros of the algorithm are: good detection performance, at least in white noise; high resolution; ease of 
interpretation; flexibility; data compression. The cons are: computational cost; deterioration of performance 
in non-white noise or with amplitude-modulated signals. Further development is needed to reduce errors 
with overlapping tonal or non-tonal signals. The algorithm is currently being applied to the problem of 
detecting right whale vocalisations and distinguishing them from those of humpback whales.

r é s u m é

Plusieurs vocalisations de cétacés sont de type tonal et la plupart sont modulées en fréquence. L ’algorithme 
de détection présenté ici sépare le contour de fréquence en une séquence d’éléments. Chacun des éléments 
est suffisamment petit pour qu’une approximation linéaire du contour de fréquence puisse être effectuée. 
Le problème est donc en ce sens simplifié de façon à ce que la détection d’un signal inconnu passe à celle 
d’un signal connu (une modulation linéaire de fréquence) avec des paramètres inconnus. La méthode 
d’estimation est basée sur le maximum de vraisemblance, et la fréquence de départ, le taux de modulation 
et l’amplitude de chacun des élements sont estimés. Des analyses plus poussées sont alors effectuées sur 
des groupes de modulations enchaînées (i.e. vocalisations) afin de classifier les sons comme étant du bruit 
ou comme faisant partis d’une espèce spécifique.

Les résultats sont tirés de la performance des données de test et de signaux synthétiques en présence de 
bruit blanc. Les avantages de cet algorithme sont: une bonne performance de détection, du moins à 
l ’intérieur d’un bruit blanc; une haute résolution; la facilité d ’interprétation; la flexibilité; la compression de 
données. Les désavantages sont: les coûts computationnels; la détérioration de la performance à l ’extérieur 
d’un bruit blanc ou avec un signal modulé en amplitude. Des développements plus poussés sont requis afin 
de réduire les erreurs provenant de la superposition d’un son tonal sur un son non tonal. L ’algorithme a été 
appliqué aux problèmes de détection des vocalisations des baleines franches ainsi qu’à celui de la 
distinction de leurs vocalisations avec celles des rorquals à bosses.
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1. INTRODUCTION

The calls of marine mammals are highly variable, and 
even those species with prima facie stereotyped call 
repertoires, such as blue whales, have proved to be more 
varied under wider scrutiny (e.g. Rivers 1997, Stafford et al. 
1999). Consequently, even a detection system directed at a 
single species must be capable of handling biological 
variation (intra- and inter-individual, geographic, seasonal 
etc.). Furthermore, the frequency contours of individual 
vocalizations can be complex and nonlinear. Both these 
points are illustrated in Fig. 1, which shows a sample of 
calls from a group of singing humpback whales (Megaptera 
novaeangliae).

In this intricate signal environment the signals of 
interest cannot usually be fully specified. Parametric models 
of sufficient flexibility and complexity to approximate real 
varying signals are rarely used in marine mammal 
bioacoustics. (The usual approach is to manually measure 
nonparametric features of the signal from a spectrogram, 
e.g. minimum and maximum frequency. These are useful 
quantities but don’t represent the signals well.) What is 
more, even under a suitable model, the statistical 
distributions of the parameters are not generally available, 
because sampling the calls on a sufficiently large scale over 
time, space, behaviour etc. is difficult.

This paper describes a method for detecting marine 
mammals calls in which the calls being detected, or parts 
thereof, are approximated by constant-amplitude linear 
chirps. The received signals are in effect simplified by 
analyzing them in short sections; in this way a paramateric 
model can be specified. A detector can be devised based on 
the estimate of the signal amplitude, and the frequency- 
related estimates hold information useful for classification.

The performance of the system is examined by (a) 
simulations using synthetic signals and noise, with known 
properties (b) trials using real recordings of whale calls.

The investigations in this study were motivated by a 
project to examine the potential use of acoustic detections 
for detecting North Atlantic right whales (Eubalaena 
glacialis) (Gillespie and Leaper, 2001). Improved 
understanding of the whereabouts of these animals could 
reduce the high mortality rate due to ships and fishing gear. 
Computer assistance in acoustic detection and classification 
is very desirable with large volumes of data, and could also 
be used for remote sensing.

2. METHODS

2.1 General description of algorithm
The frequency contour of marine mammal tonal calls is 

usually nonlinear. However, subsequences of the data 
(frames) can be taken, and if they are sufficiently short, then 
the call contour in that frame will be approximated well by a 
linear chirp. When a signal is present, each data frame can 
be treated as possibly containing a ‘partially known’ signal 
(i.e., a linear chirp with unknown parameter values to be 
estimated). This framing approach is like that used in the 
short-time Fourier transform, but the underlying signal 
model is different.

A spectrogram of a synthetic tonal sound with a 
nonlinear frequency contour is shown in Fig. 2. The sound 
was divided into four parts, and each part was treated as a 
linear chirp. The parameters were estimated with the 
algorithm described in this paper; the chirps are overlaid in 
the figure.

Figure 1. Spectrogram of a sequence of calls from a group of singing humpback whales (M. novaeangliae).
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Figure 2. Spectrogram of a synthetic tonal signal with a 
nonlinear frequency contour, characterised by a sequence of 
four linear chirps (white lines).

If a chirp is present, its parameters may be estimated 
(amplitude, start frequency and chirp rate). The problem 
before us then is to find a good detector fo r  short signals 
and low SNR. Together, these are particularly challenging 
conditions for detection. Boashash (1992) reviewed several 
methods under these circumstances, and with one exception, 
a maximum likelihood estimation (MLE) method worked 
best. This is the method used here.

Detection and estimation in white noise
In the case of white Gaussian noise (WGN), the 

combined (complex) signal and noise model is y=z + w, 
where y is the observed signal and noise, z represents the 
underlying signal, and w the noise. The signal is modeled as 
a linear chirp so that:

z[n ] =  A  e x p ( j ( a 0 +  a 1Àn +  a 2 A2 n 2))

where À is the sampling interval; a0, a1 and a2 are phase 
parameters; and A is the amplitude (assumed constant). The 
phase parameters are related to the start frequency f  and 
chirp rate c by f=a1/2rc and c=a2/ rc.

The MLE estimates of a linear chirp in white noise are 
shown by Boashash (1992) to be obtainable using a 
‘dechirping’ operation:

m a x  L ( a 1, a 2) =

m ax
1 N-1 

— X  y [ n ] e x p ( - j [ a 1A n  + a 2 a2 n  2])
N t

(For those readers familiar with time-frequency analysis, 
there is a connection here with the Wigner distribution. Kay 
and Boudreaux-Bartels (1985) describe a detector in which 
the Wigner distribution of the observed data is integrated 
along all lines in the time-frequency plane. They show that 
this is the optimal detector for sufficiently long chirp signals 
in white noise. Li (1987) proves that the dechirping 
approach used here is equivalent.)

An example likelihood surface from a 1024-point 
synthetic chirp signal is shown in Fig. 3.

Figure 3. The likelihood surface from a 1024 point frame, for a 
synthetic, constant-amplitude linear chirp with a start 
frequency of 500 Hz and chirp rate of 100 Hz/second.

The likelihood can be maximised numerically over a 
grid of frequency and chirp rate values. The allowable 
combinations form a parallelogram: values chosen outside 
of this region would lead to negative frequency values. This 
region is given by:

-  —  < c  < 
T

f  — _ -  f  

v 2T  T

\

where fs is the sample rate, T is the duration of frame 
(seconds).

However, for reasons of efficiency the algorithm 
searches the entire rectangular region using FFTs:

CI1 , ^ ^ 2  —

a rg m a x (
a ,«2

1 N-1 

— X  y [n] ex p ( - j [ a 1 A n + a 2 a2 n  2])
N  n—0

=  arg m a x ( | D F T  (  y ' ( a 2) ) 2 )

which uses the maximum of the discrete Fourier transform 
(DFT) of the dechirped signal y’[n;a2]=y[n]exp(-ja2A2n2). 
Although the search is over the entire rectangular region, the 
likelihood values in the out-of-bound (negative frequency) 
regions will be small.

The MLE estimate of A is given by (Boashash 1992):

A  =

1 N -1

— X  y [ n ] e x p ( - j [ a 1A n  + a 2 a2 n  2])
N  n—0

a ,a\ ^ 2

2

0
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but a better estimate of amplitude (see results, especially fig. (v) The assumption of constant amplitude is almost 
7) is: certainly violated.

A  =

m ax
a \ , a 2

1 N-1

— X y [n] exp ( - i  [a iA n + a 2 a2 n 2])
N n-0

Detection and estimation in coloured noise
In the more general and probably more realistic case of 

coloured noise, we have the signal and noise model y=z + 
wc ,where wc is now distributed as N(0,C), where C is the 
sample autocorrelation matrix of the background noise. The 
spectrum of coloured noise is not flat.

In this case, a whitening approach can be used as 
described by Kay (1993). The matrix C is factored to give a 
‘prewhitening matrix’ D such that C-1=DTD. Applying D to 
the combined signal and noise:

Dy Dz + Dwc
z’ + w’

where w’ is distributed as N(0,I), i.e. the noise has been 
whitened. The resulting signal z’, the parameters of which 
are now estimated, is a distorted version of the original. The 
potential advantage of prewhitening is that the flat noise 
spectrum means that consecutive estimates when the signal 
is absent or weak will not be correlated due to correlation in 
successive noise spectra.

Efficiency of estimators
MLEs are usually statistically efficient, i.e. as N tends 

to infinity and at a sufficiently high SNR, the estimates are 
unbiased and have variances that attain the Cramer-Rao 
Lower Bound (CRLB) (a lower bound on the variance of all 
unbiased estimates). In other words, under these ideal 
conditions, the resolution of the MLE is as high as can be. 
Peleg and Porat (1991) give the CRLB variance bounds for 
constant-amplitude linear chirps in white noise.

DFT-based estimates, on the other hand, do not attain 
this resolution even under high SNR, high N conditions (see 
e.g. Boashash 1992, fig 3). Of course, whether high 
resolution is required for a classification problem needs to 
be assessed on a case-by-case basis.

However, in the present study the estimates do not 
necessarily have these desirable MLE properties, because of 
the following conditions used:

(i)

(ii)
(iii)

(iv)

N is not large because short frames are used to obtain 
a linear approximation to the frequency contour.
The SNR can be low for long-range signals.
The use of the DFT for computationally efficient 
estimation of frequency introduces a limit to the 
resolution.
With the prewhitening transformation of a signal in 
coloured noise, the underlying signal is distorted.

The performance of MLE estimators at small N cannot 
usually be found analytically (Kay 1993). Simulations were 
therefore carried out using synthetic signals and noise to 
provide an understanding of the bias of the estimators as a 
function of SNR and N.

After detection of individual chirps, sequences of chirps 
can be concatenated to represent the entire signals or calls. 
The information can then be used jointly for call detection 
(as opposed to chirp detection) or call classification.

2.2 Testing of performance
The following simulations used 1000 runs each and a 

sample rate of 2kHz. Results were obtained as a function of 
signal-to-noise ratio (SNR) and signal length (N). The SNR 
is defined as A2/o2, where o2 is the noise variance.

Bias of estimators
Synthetic linear chirps (start frequency 100 Hz, chirp 

rate 200 Hz/second) were created and embedded in WGN. 
The biases in estimates of start frequency, chirp rate and 
amplitude were examined.

Detection using synthetic signals and noise
Synthetic linear chirps were created and embedded in 

noise. The parameter values were randomly chosen in such 
a way that there were no negative-going frequencies. Some 
examples are shown in Fig. 4. The algorithm was used to 
estimate the signal amplitude, and this was used as a test 
statistic for detection. The probability of false and true 
detections was determined by simulation.

Two types of noise were used: WGN and a coloured 
spectrum based on a sample from the ocean. Synthetic 
noise, with a similar magnitude spectrum to the sample of 
ocean noise, was generated by passing white noise through a 
specially designed filter. An example power spectrum is 
shown in Fig. 5. The filter was designed using the Yule- 
Walker method (MATLAB signal processing toolbox).

Figure 4. Examples of four linear chirp signals with randomly 
chosen phase parameter values. The parameter values are 

chosen so that there are no negative-going frequencies.
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Figure 5. Power spectrum of a sample of synthetic ocean noise.

Detection using real recordings
In order to allow a dynamic response to changing noise 

levels and spectra in real noise conditions, the noise 
variance (o2) and the prewhitening matrix were re-estimated 
periodically, based on a block of sound. The signal samples 
used to calculate these quantities are based on order 
statistics.

Let
{si}, i=1,...,m be a set of sound vectors each of 
length N, selected randomly from the current sound 
block.
vi=var(s0, the variance of vector i
ej and ek = the jth and kth percentiles of the
distribution of {v;}.

ej provides an estimate of o2. The sample vector 
corresponding to ek is used to estimate the prewhitening 
matrix D.

Table 1 shows the parameter settings used for the 
analysis presented in this paper. In addition, files were high- 
pass filtered at 50 Hz. The allowable chirp rate was set 
between +/- 250 Hz per second and searched over 100 
points. Chirps were detected and estimated with start 
frequency up to 800 Hz. These settings were chosen after 
some initial experimentation showed they produced 
reasonable fits to call contours (see Fig. 11) and few false 
detections on the spectrogram, but they are in no sense 
optimal.

Table 1. Parameter settings for analysis of real recordings used 
in this study.

Parameter Description Value

fn Sampling rate (per second) 
for noise blocks

1/60

m Size of set of sample noise 
vectors

400

j Percentile for noise 
estimation

0.9

k Percentile for prewhitening 
matrix

0.5

N Frame length 512
H Hop length 256

After detection and estimation of chirps, sequences of 
contiguous chirps that did not differ in frequency by more 
than 30 Hz were combined into detected ‘calls’. The 
characteristics of calls from recordings of right whales, 
humpback whales, and a recording thought to be free of 
both, were then compared. Information about these 
recordings is shown in Table 2.

The comparison of humpback and right whale call 
characteristics showed that right whales commonly 
produced upsweeping calls. An upsweep detector was then 
made; this simply selected the subset of upsweeps from the 
detected calls.

The upsweep detector was optimised as a function of 
the SNR threshold in the following sense. The number of 
upsweep detections was maximized in recordings where 
right whales were known to be present, and simultaneously 
minimized in the recording where right whales were thought 
to be absent.

3. RESULTS

3.1 Simulations using synthetic signals and noise
Bias of estimators

Fig. 6 shows the bias in frequency and chirp rate as a 
function of N and SNR, from simulations using a synthetic 
chirp in WGN. Below a threshold SNR for all N, bias 
increases rapidly. Above the threshold, the bias is generally 
small.

Table 2. Information about recordings used for analysis.

Location Date # hours 
recorded

No. of 
channels

Human listening Visual survey

Cape Cod Bay 16/3/01 4 3 Many right whales heard. Right whales 
seen on 17/3/01.

Great South 
Channel

26/5/00 4 6 Right whales and humpbacks heard. Right whales 
seen on 26/5/00.

Great South 
Channel

01/05/01 12 1 Few right whale calls heard by human 
listeners; of these, none definite.

None

Great South 
Channel

16/5/00 4 6 Many humpbacks heard. No right whales 
heard.

None
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Figure 6. Sim ulation results show ing biases o f  start frequency  
(top) and chirp rate (bottom ) for linear chirps in W G N , as a 

function o f  SN R  and N. W hen the num ber o f  sam ples and SNR  
are sufficiently high, the bias approaches (but does not 
necessarily reach) zero. T he threshold SN R  decreases as N  
increases. N  is shown in the legend.

Figure 7. Sim ulation results showing biases o f  two estim ates of 
signal am plitude: Â 1 (top) and Â 2 (bottom ), for linear chirps in 
W G N , as a function o f  SN R  and N. See text for details o f  these  

estim ators. Â 2 has less bias and appears to stabilise as SNR  
increases. N  is shown in the legend.

The bias o f the amplitude estimator Â 1 is shown in Fig. 
7 (top), and does not approach zero for these values o f N 
and SNR. The estimator is sensitive to the biases in the 
estimates â1 and â2. The bias o f estimator Â2 is shown in 
Fig. 7 (bottom). The bias stabilises above a threshold SNR 
and is relatively small. Therefore, Â 2 is used for detection 
purposes in this study.

Detection performance
The performance o f the detector on random linear 

chirps is shown in Fig. 8. The results show that, as 
anticipated, the increase in N leads to improved 
performance at low SNR. However, the real cost of 
increased N  is hidden in these simulations. Real signals 
usually have a nonlinear contour, and increasing N  in that 
case would make the linear approximation poorer, leading to 
a trade-off in performance.
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Figure 8. Performance of detector on synthetic linear chirps in 
W GN, for N=512 (top) and 1024 (bottom). Detection 

performance improves as N increases. SNR (dB) is shown in 
the legend.

Fig. 9 shows the results for a detection of linear chirps 
in WGN by peak-picking the DFT. Performance is poorer 
than the chirp detector. However, these results may 
exaggerate what would happen using real signals, because 
modulation rates are likely to be more limited.

The performance of the detector in coloured noise with 
and without prewhitening is shown in fig. 10. Prewhitening 
in this case improves the detector.

ROC curve fo r linear chirps, N=512
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Fig. 9 Detection performance by peak-picking the DFT using 
synthetic linear chirps in WGN (N=512). SNR (dB) is shown in 
the legend.

ROC curve for linear chirps, N=512

Figure 10. Detection performance in synthetic ocean noise with 
(bottom) and without (top) prewhitening. SNR (dB) is shown in 

the legend.

3.2 Tests using real recordings
The spectrogram of an underwater recording is shown 

in Fig. 11, with the detector results overlaid in white. In the 
figure are the sounds of a disk drive, two right whale 
upsweeps and another, more complex whale call. The 
detector has found and estimated short chirps and these are 
shown in white. After detection and estimation of chirps, 
nearby chirps are joined together into calls or sounds as 
described in the methods section.

The start frequency and sweep of calls from the recordings 
of right whales and humpbacks is shown in Fig. 12. A 
cloud of points representing upsweeps is evident from the 
right whales at about 50-150 Hz start frequency and 
sweeping up by about 30 Hz or more. This type of call is in 
fact well known from previous studies as a low-frequency 
‘contact’ (upsweep) call (Clark 1982, McDonald and Moore 
2002). As the scatter of points in Fig. 12 shows, they vary 
considerably in start frequency and sweep rate. Some 
example spectrograms are shown in Gillespie (2004). Calls 
with these characteristics were not found in the humpback 
recording.
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Figure 11. Illustration of the detection and estimation algorithm. The spectrogram of the received sound is shown with the detected 
and estimated chirps overlaid in white. The algorithm has detected the sound of a disk drive over the first 12 seconds; right whale 

upsweeps at about 26 and 32 seconds; and a more complex call at about 40 seconds.

There is considerable overlap elsewhere in the parameter 
space, though humpback signals with start frequencies >200 
Hz tend to have greater sweep magnitudes. A large 
proportion of the signals with small sweep are false 
detections of ambient noise. In fact, the magnitude of the 
frequency modulation is a good indication of a biological 
signal.

The results show that, at least in the recordings tested here, 
upsweeps are a common and fairly distinctive right whale 
call. An upsweep detector was created to find calls with start 
frequency between 50 and 200 Hz, and with an end 
frequency at least 30 Hz higher than the start frequency (i.e. 
>30 Hz upsweeps). The duration of the signals was between 
0.5 and 3 seconds. It is possible, however, that calls with 
inflexions in the contour may also be selected i.e., which are 
not strictly upsweeps.

The results of applying the upsweep detector to real 
recordings are shown in Fig 13. The figure shows the 
number of upsweeps detected per hour per channel as a 
function of threshold SNR. The y-axis in each plot shows 
the rate from a recording when right whales were present, 
and the x-axis shows the rate from a recording where right 
whales were thought to be absent. As the SNR threshold is 
decreased, more right whale calls are detected (y-axis) but 
there are also more false detections (x-axis). The appropriate 
threshold setting depends on the false detection rate required 
by the application. In the case of the northern right whale, a 
very low false alarm rate is likely to be required.

The effect of the prewhitening process is also shown in Fig. 
13. Prewhitening appears to reduce the performance of the 
detector, except at high SNR thresholds in the Cape Cod 
Bay recording. No general conclusions should be drawn 
about using prewhitening though: its usefulness or otherwise 
will depend on the nature of the noise; and furthermore only 
one particular setting was tested here (Table 1).

Hunripback w hales

200 --------------------------t--------------------------t--------------------------

?  -10Ü

-2 0 0 ------------------ 1------------------ 1------------------ 1------------------ 1------------------
D ICO 2 DO 330 400 600

start freq. (Hz)

Figure 12. Scatterplot of start frequency versus sweep for calls 
of duration between 0.5 and 3 secs with an SNR threshold of -6  

dB. The top plot is from the recording of humpback whales 
(Great South Channel 16/5/00) and the bottom from right 

whales (Cape Cod Bay 16/3/01). There are many upsweeping 
calls from right whales.

4. DISCUSSION
In an ideal detection environment of known, fixed 

signals, template-based detection methods such as matched 
filters perform well. In biologically realistic environments, 
however, signals are highly diverse and variable, and often 
only partially known. Methods are required which handle 
signals of this nature. The problem of detection and 
estimation of real animal signals will often be intractable
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under a fully parametric approach, because this requires (i) a 
sophisticated and flexible parametric signal model, and (ii) 
large, high-quality datasets for determining the statistical 
distributions o f the parameters. The system described here 
attempts to simplify the problem somewhat by ‘forcing’ FM 
tonal signals to be approximately chirp-like using a short 
data frame. The result is a highly flexible system, which 
allows any slow-varying frequency-modulated signal to be 
detected and characterised as a sequence o f linear chirps.

4.1 Detection and estimation of linear chirps
A problem introduced by the deliberately short frames 

is that detection performance generally falls with signal 
length. Short signal length and low SNR are particularly 
challenging detection conditions. Nevertheless, performance 
may still be superior to techniques based on the DFT 
because the underlying model in that case is that of 
stationary (sinusoidal) signals, while the signals o f interest 
are known to be frequency-modulated. The simulation 
results appear to confirm this.

It is likely that the method will usually give a reasonable fit 
to the actual phase o f the original signal (with sufficiently 
high SNR) because o f the linear approximation. There are 
biases because the data frames are short (i.e. N  is not large), 
but these biases are small.

However, the model assumes a constant amplitude signal, 
which is certainly incorrect. Real signals will have at the 
very least a finite attack and decay. No results have been 
obtained in this paper on the effects o f amplitude 
modulation.

A potential disadvantage o f the method described here is 
that it only searches for the global maximum of the 
likelihood surface, and therefore can only detect a single 
signal in any frame. Generalising the technique for use with 
multicomponent signals should be possible but would 
require more processing. The method o f simulated 
annealing may be a useful way of finding multiple local 
maxima (Press et al., 1992). The current inability o f the 
algorithm to detect multicomponent signals means that it is 
not practical for analysing the whistles o f wild groups of 
odontocetes, in which simultaneous calls are common. But 
the call rate o f baleen whales, with the exception o f singing 
humpbacks but including right whales, is generally low and 
simultaneous calls may be unusual.

Further signal processing may be required to eliminate 
detections o f broadband sounds. The algorithm will trigger 
on these but they may be eliminated using a further measure 
o f spectral concentration.

Extending the present estimation method for use with a 
higher order polynomial is fairly straightforward but 
necessitates further computational costs. Some initial 
simulations have also indicated that the detection 
performance deteriorates with this type of model, although 
further investigation is needed. In comparisons o f methods 
for estimating nonstationary signals, Boashash (1992) found 
that for estimation with short signals and low SNR, the 
‘cross-W igner-Ville’ method outperformed the ML method, 
but this method requires more intensive processing.

G S C 0 1 / 0 5 / 0 1  ( f e w  c a l l s )

Figure 13. Performance of the upsweep detector using real recordings. Numbers of calls per channel per hour are shown for the 
two workshop test datasets (y-axes), in which right whale calls are present, against a dataset thought to be free of right whales (x- 
axis). The curves show the effect of varying the SNR threshold from -2  to -10 dB, and applying or not applying the prewhitening

procedure. The characteristics of the calls are described in the text.
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4.2 Formation of calls
Two further processes are required after the 

detection/estimation o f chirps. Firstly, a method o f forming 
calls from sequences o f linear chirps is needed. Secondly, 
classification requires the allocation o f subsets o f calls with 
the required characteristics to the appropriate classes. In this 
study, these secondary processes were purposefully kept 
simple. Contiguous chirps that did not differ in frequency by 
more than some upper limit were combined into calls, and 
calls with appropriate start and end frequencies and 
durations were selected. Both o f these processes could 
easily be improved to make further use o f phase and 
amplitude information, perhaps also using continuity 
conditions.

4.3 Application to right whale detection
The numerical representation using the linear chirp 

model is very compact. In the example of Fig. 2, a ~2 
second signal (2048 samples at 1000 Hz sample rate) was 
characterized by four 512-point linear chirps, requiring 
storage o f 12 numbers (4 chirps x 3 estimates). This reduced 
the original digitized sound information by a factor o f the 
order 100. In practical terms, satellite transmission is much 
more feasible after processing in this way.

In this study, right whale detection has focused on the 
relatively simple (yet variable; see Fig. 12) contact call or 
upsweep. Recent studies, including this one, have now 
shown this type o f call to be reasonably common from 
northern right whales (McDonald and Moore 2002, 
Laurinolli et al. 2003).

For this particular signal type the 512-point linear chirp 
model, as applied in the present paper, may not be ideal. 
Firstly, a longer chirp model ought to provide better 
detection performance if  the linear approximation to the 
contour holds fast. Secondly, the search space o f the 
algorithm could be reduced to only include the region 
corresponding to upsweeps.

A more realistic model for variable upsweeps is a 
polynomial phase signal. Clark (1982) estimated polynomial 
coefficients by regression on digital images o f spectrograms 
and used these as descriptors o f call shape in southern right 
whales. Since then, computer functionality has developed 
considerably to allow this kind o f parametric approach. For 
right whale upsweeps, an extension o f the method used here 
to higher-order polynomials ought to be possible, though the 
additional computational cost could cause practical 
problems.

On the other hand, there are advantages to using the general, 
short chirp detector applied in this paper. Although not 
optimal for detecting longer upsweeps, information on other 
signals present over a larger frequency range (50-800 Hz, 
say) could be used to identify characteristics o f humpback 
calls. This more general approach might, for example,

provide suitable quantitative information within which to 
search for periodic, similar signals, and for practical 
purposes these may be sufficiently distinctive features of 
humpback song.
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