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a b s t r a c t
In this paper, we describe a parametric modeling method for detection and characterization of tonal signals 
and its application to marine mammal calls. The method tracks dominant frequencies with an adaptive 
notch filter (ANF), and couples this to a novel, simultaneous detection step. The detection statistic is 
derived from a measure of tracking reliability, obtained as a by-product of the tracking algorithm. Detection 
therefore comes at little extra computational cost from an algorithm that is fast, simple, and capable of 
dealing with multiple signals in low signal-to-noise ratios. Frequency estimates are derived directly from 
the time domain waveform, avoiding the resolution trade-off and other short-comings of the commonly 
used spectrogram. The performance of the algorithm is demonstrated on both simulated signals and 
recordings of right whale calls. The method is found to be noise robust and capable of extracting right 
whale and other calls with a low false alarm rate.

s o m m a i r e

Le présent article décrit une méthode de modélisation paramétrique pour la détection et la caractérisation 
des vocalisations tonales de mammifères marins. La méthode consiste à poursuivre les fréquences 
dominantes à l’aide d’un filtre à encoche adaptatif (ANF), couplé à une étape de détection simultanée 
innovatrice. La statistique de détection est dérivée d’une mesure de la fiabilité de poursuite, un sous- 
produit de l ’algorithme de poursuite. La détection entraîne un coût computationnel additionnel minime, et 
est à la fois rapide, simple, et capable de traiter des signaux multiples et à de bas rapports signal sur bruit. 
Les estimations de fréquence sont dérivées directement du domaine temporel et fréquentiel, évitant ainsi les 
compromis de résolution de la technique spectrogramme utilisée fréquemment. Dans une application sur un 
fichier d’une durée de 18-min de l’ensemble de donnée de l’atelier, il est possible de détecter quatre 
vocalisations probables de baleines franches.

1. i n t r o d u c t i o n

Passive acoustic detection of cetaceans is an important 
and growing research field. The mitigation of several 
different threats to cetaceans, such as collisions with ships 
and ensonification by high-power active sonar, require the 
detection, localization and, ideally, identification of 
cetaceans in the vicinity. Visual observation requires 
daylight, a reasonably calm sea, and that the cetaceans are at 
the surface. These drawbacks do not apply to a system based 
on processing the cetaceans’ vocalizations. Here, to be 
detectable an animal must vocalize, but this is not a major 
drawback as most cetaceans are highly vocal. One must also 
be able to process the calls in strong background noise and

other difficult environmental conditions and handle the great 
variability of most cetacean calls.

The Workshop on Detection and Localization of 
Marine Mammals Using Passive Acoustics, held in 
Dartmouth, NS, 19-21 November 2003, answered to the 
growing need of collecting and comparing different 
algorithms for passive acoustic processing of marine 
mammal sounds. The conference focused on processing the 
sounds of the North Atlantic right whale, a critically 
endangered species of which there less than 300 individuals 
left [1]. Strong protection measures are already in place for 
this species, for example the US Marine Mammal Protection 
Act states that no vessel is allowed within 500 meters of a 
North Atlantic right whale [2]. To implement such
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protection measures it is crucial to be able to detect right 
whales in the vicinity.

Accompanying the workshop was a dataset of several 
underwater recordings containing right whale calls. These 
recordings were all made on moored single hydrophones in 
the Bay of Fundy, a key North Atlantic right whale habitat. 
One file, called L-138, was specifically meant for testing 
detection algorithms, and will be used for this purpose here. 
The file is 18 min long and sampled at 1250 Hz.
In this paper, we use model-based signal processing to 
detect and characterize right whale sounds. Model-based 
signal processing is a popular research field that has found 
applications in many fields, such as biomedical signal 
processing, speech recognition and economic forecasting. 
The idea here is to apply a model, controlled by a small 
number of parameters, to the signal. Given old samples, the 
model produces a prediction of the next signal sample. By 
minimizing the difference between the model-predicted and 
the actual signal, we fit the model to the signal and force 
information about it into the model parameters. These can 
subsequently be used to characterize the signal, and, as we 
show here, also to detect occurrences of the signal immersed 
in broadband noise.

We use a specific type of model known as an adaptive 
notch filter (ANF), which expresses the prediction error by a 
filtering operation on the input signal. The transfer function 
magnitude response of the notch filter is that of a deep notch 
at one or more frequencies, and a relatively flat level away 
from notches. On fitting the notch filter to a recording, we 
minimize the filter output, which forces the notches to 
attempt to cancel the signal frequencies at each time. After 
model fitting one can the use the notch frequencies as 
estimates of the dominant frequencies of tonal components 
of the signal. The frequencies can then be fed to a classifier, 
but this step is not reported here. The ANF model is tailored 
to fit narrowband signals, and is capable of modeling 
simultaneous signals of time-varying frequencies and 
amplitudes. The authors have recently reported on this for 
cetacean whistles [3][4]. Because it works directly on the 
signal waveform, the ANF model avoids the resolution 
problems of characterization methods that are applied to the 
spectrogram or another time-frequency distribution. Also, it 
is simple to implement and use, requires little user tuning, 
and can be run in real-time.

This paper exploits a novel architecture where the ANF 
is used both for detection and characterization. The 
algorithm is an adaptive scheme with a fading memory. This 
allows it to estimate parameters based on a finite 
observation interval, so giving it the ability to track time- 
varying parameters. We propose to run a parametric model 
along the whole signal and detect signals from a measure of 
the reliability of the parameter estimates. This measure is an 
internal variable in the adaptation scheme, so detection 
comes at very little extra computational cost. The detection 
decision could possibly also be made on the basis of an 
analysis of the frequency estimates themselves. But for

time-varying signals this is difficult - for instance we cannot 
just use the parameters’ variances because a time-varying 
signal will naturally impose its own variation in the 
parameters.
The layout of this paper is as follows: In Sections 2 and 3, 
we describe the theory of ANF modeling and establish 
theoretical grounds for a suitable detection statistic. Then, in 
Section 4 we describe how to apply our method to detect 
and characterize tonal sounds in oceanic background noise. 
Section 5 reports on the results of application to a simulated 
signal and the workshop dataset L-138. Finally, in Section 6 
we draw conclusions from the findings.

2. REVIEW OF ADAPTIVE NOTCH 
FILTER THEORY

For a signal composed of one or more slowly evolving 
narrowband signals, an AR model is appropriate. However, 
when such a signal is observed in moderate or strong 
background noise, the AR model does not perform well. 
Better performance can be obtained by including the noise 
in the model. To this end, we first pre-whiten the noise by 
estimating and equalizing its spectrum. This will be further 
discussed in Section 4. Including white background noise in 
the model results in an ARMA model with equal AR and 
MA parts. However, such a model is not identifiable as its 
transfer function is undefined at the signal frequencies. The 
standard way of dealing with this is to contract the poles 
slightly towards the origin using the pole contraction factor 
p ., 0<p<l. The pole contraction factor controls the notch 
bandwidth, and therefore implicitly the trade-off between 
tracking ability and noise robustness. This is because the 
algorithm is only able to track a signal if its instantaneous 
frequency falls within the current position of a notch, but the 
wider the notch width the more noise energy slips into the 
notch and influences the estimation.

The adaptive notch filter model expresses the prediction 
error s(n) as

P

1+Z ai (n)q !
s (n) = -----pr1--------------y (n) = H  (q  n) y{n) (1)

1 + ^ P ' a i (n)q
i =1

where y(n) is the recording, H(q-I,n) is the transfer function 
of the notch filter, and ai(n) is the ith AR coefficient at time 
n. The model order P  is twice the number of components M  
tracked by the model, P=2M. The model order is a user- 
defined parameter, however one for which we argue that the 
exact value is not critical. Since we shall couple the 
estimation to detection, wherein we shall determine when a 
component is locked on to a signal, it suffices to choose the 
model order as the maximum number of simultaneous tonals 
that one wishes to track. If more tonals are present, the 
model will track the strongest ones at each time.

Several different filter parameterizations can be used.
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Estimating the AR coefficients ai(n) directly is the most 
intuitive approach, but it is better to use parameters that 
relate to only one tonal each. This can be accomplished by 
either using a direct frequency parameterization based on 
the fact that the transfer function pole angles are equal to the 
normalized angular notch center frequencies [5], or by 
writing the notch filter in cascaded form [6][7]. Here, the 
direct frequency parameterization is chosen. Classification 
of a tonal marine mammal sound is usually based on its 
frequency contour, that is the evolution of its dominant 
frequency with time [8]-[ 10], so this is suitable for the 
application. Moreover, by defining the model through the 
poles one obtains a representation in which the parameters 
are nearly independent. This permits the development of the 
detection methodology described in Section 3. However, 
cascaded filter forms promise better convergence properties 
[7] and will be studied in the future.
For slowly evolving tonals, the AR polynomial A (q I,n)

A(q  n) = 1 + M a i (n)q -i (2)
i=1

is necessarily monic symmetric. This implies that the 
transfer function of each cascaded filter stage only has M  
free filter parameters (p is usually taken as a user 
parameter).

We use the popular Gauss-Newton type recursive 
prediction error (RPE) algorithm [11] to estimate the model 
parameters of a direct frequency parameterized adaptive 
notch filter. This algorithm has several attractive properties, 
including a fast operation (it has been implemented in real­
time), good convergence properties, and a minimal 
parameter variance when applied to stationary signals [11]. 
The properties of ANFs estimated with the RPE algorithm 
and applied to both stationary and non-stationary signals 
have also been much studied [6], [12] -[14]. With the RPE 
algorithm, estimation works by stepwise minimization of a 
cost function P(n), which is a weighted sum of squared 
prediction errors,

n
J3(n) = 2i(n)^ T ( n ,  m )s2 (m) (3)

m=1
Here, r(n,m) is a weighting function that defines the

1. Initialize: %(0) = 0, y c (0) = 0, S(0) = 100/y / I, a>i (0) = T  /(M  +1). Design parameters: p(n), l(n ), P  (= 2M )

2. For n=1,2,...,N do:

X i (n) = -y (n  -  i) -  y(n - P + i) + p l (n)s(n -  i) + p P i (n)s(n - P + i) ,1 < i < M

X m (n) = -  y (n -  M  ) + p M (n)s (n -  M)
s(n) = y(n) + y(n -  P) -  p P (n)s(n -  P) -  %T (n)a(n -1)

/ /  (n) = - y F (n -  i) -  y F (n -  P + i) + p l (n)sp (n -  i) + p P 1 (n)sp (n -  P + i) 

V m (n) = -  y  f (n -  M) + p M (n)sF (n -  M  )

J(n) = j{w(n -1), a(n -1)} 

y(n) = J (n )y c (n)

,1 < i < M

S(n) =
1

Â(n)
S(n -1) -

S (n -1 )y (n )y  (n)S(n-1) 

X(n) + y  T (n)S(n -  1)y(n)
ra(n) = ra(n -1) + S(n)y(n)^(n) 

a(n) = G {«(n)}

s(n) = y(n) + y(n -  P) -  p P (n)s(n -  P) -  %T (n)a(n)

s F (n) = s(n) -  p P (n)sF (n -  P) -  p M (n)sF (n -  M )aM (n) -

- Mi1[pl (n)^F (n -  0  + p P -  (n)^F (n -  P  + i)a i (n)
i =1

y f (n) = y (n) - p P (n) y f (n -  P) - p M (n) y F (n -  M  )aM (n) -
M-1

Ml  \p l (n) y  f (n - 1)+p P ' (n) y  f (n -  P +o k (n)
i =1

Table 1. Gauss-Newton RPLR estimation algorithm for adantive notch filter with direct freniiencv narameterizatinn [51.
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analysis window and i(n) is a normalization factor equal to 
the inverse of the window sum. The RPE algorithm is in 
essence an algorithm for stationary signals, so we use the 
window function r(n,m) to define a short analysis window 
within which the signal is nearly stationary. The width of 
the window is controlled by a design parameter known as 
the forgetting factor, X. The name arises because X controls 
the duration of the algorithm’s memory. For a constant 
forgetting factor, the window is exponential and given by 

r(n , m) = Xn-m (4)

The Gauss-Newton RPE-type algorithm for estimation 
of the pole angles of an adaptive notch filter is given by 
Table 1. The algorithm was first reported by Chen et al [5] 
and is based on the ANF of Nehorai [5] and the findings of 
Nehorai and Starer on a pole-parameterized AR model [13]. 

In Table 1, / c (n) denotes the negative gradient of the 

prediction error with respect to the vector of transfer 
function coefficients a(n), / ( n )  the gradient with respect to 

the angular notch center frequencies —n),
dp

/ i (n) = - - —  (n)d—i
(5)

and S(n) the inverse of the pseudo-Hessian matrix (see [11], 
[5] and Section 3). G(n) is the mapping from —n) to a(n).

One can implement it by denoting ai = ai 

m=0,1,..,M calculating [13]

a (m) = a (m-1) - 2ai(”|1-1)cos 2,— m + a (m2-1)

( M ) and for

(6)

for 1<i<P, given that a0O) = 1 and a(m) = 0 for all other i

and m. J(n) is the Jacobian of this mapping, which can be 
estimated iteratively from [13]

da

, ( m )

(n ) = 0

( n ) = 2 sin — ( n )

d a  p 

d a 1 

d — p

d a i „ , „ , da i i . . da i-2 _
------ ( n ) = 2cos —  ( n ) -- ------(n ) ----------- (n ) +
d — d — p d —p

2 < i < P

(7)

+ 2 a i-1 ( n ) sin — p (n ),

for 1<p<M Further, yF(n) and sF(n) are the recording and 
prediction error, respectively, filtered by the AR part of the 
notch filter, and p(n) is the a posteriori prediction error. 

Using p(n) instead of p(n) where possible improves the 

convergence properties of adaptive estimation algorithms 
[11]. See [5] for a more thorough discussion. The tonal 
frequencies f(n )  can be estimated from 

— (n)
f i (n) = f s

2 ,
(8)

where fs  is the sampling frequency.
The selection of the design parameters X and p  is 

important. A higher forgetting factor gives a better noise 
robustness, but a reduced tracking ability, and vice versa.

This trade-off is similar to that which controls the choice of 
the pole contraction factor, wherefore a relationship 
between them can be determined. Previous authors have 
studied how to choose this relationship according to 
different criteria [ 15]—[18]. For simplicity, we choose to 
adopt the result of Dragosevic and Stankovic [15], which is 
that the optimal pole contraction and forgetting factors are 
equated. This result was derived assuming that components 
are strictly narrowband and that their frequencies evolve 
according to a random walk model, which describes 
frequency increments as small and normally distributed with 
zero mean. Frequency increments on tonals are not well 
described by a random walk model, although by the central 
limit theorem if we average the increments over a great 
many signals we might expect this to result in a Gaussian 
pdf. Whilst this forms a partial justification for our choice 
we make no claim about absolute optimality. Our limited 
information about the signals of interest precludes 
determining a relationship that is certain to give better 
performance.

In this study, we keep the forgetting factor X (and, 
consequently, the pole contraction factor p ) constant during 
the course of the whole recording. This is not the common 
approach on previously detected signals [12], [16]-[18]. 
There, one usually increases X and p  exponentially from a 
low starting value. But we do not beforehand know where 
we will find detections, and have no reason to change our 
trade-off between tracking ability and noise robustness 
during the recording.

3. U S IN G  T H E  M O D E L  O U T P U T  F O R  

D E T E C T IO N

Near an extremum point of a one-dimensional function, 
the second derivative provides a measure of how "sharp" the 
stationary point is. Equivalently, a measure of the width of 
the extremum peak or trough is given by the inverse of the 
second derivative. In multiple dimensions, the analog to the 
second derivative is the Hessian matrix Pij of second order 
partial derivatives. The Hessian of the cost function of 
equation (3) is

P j (n) =
d p(n) 

d—i d—j

= (n )  £ r ( n  , m ) < (m ) / j  (m) + p(m)
d 2p

(9)

n=\ d—i d—
-(m)!

The diagonal elements of the inverse pseudo-Hessian 
S(n) provide a measure of the peak or trough width. In the 
pseudo-Hessian, the second term of equation (9) has been 
discarded, but this is a good approximation close to an 
extremum point [11]. It also ensures that the diagonal 
elements of S(n) are positive. S(n) can then be used to 
measure the reliability of the current parameter estimate. 
This has also been formalized in the Cramer Rao theorem
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on a lower bound to the variance of any unbiased estimate 
of a stationary parameter. The Cramer-Rao lower bound is 
estimated from the diagonal elements of the inverse of the 
Fisher information matrix, which in white background noise 
and for stationary parameters is closely related to the 
Hessian. Although the formalities are not detailed here, we 
note that for stationary signals the diagonal elements of the 
inverse Hessian are related to the variance of the parameter 
estimates. This nice property does not strictly hold for the 
non-stationary signals of interest here, but if they are indeed 
nearly stationary within the analysis window there should 
still be a strong relation between the diagonal of S(n) and 
the estimate variances.

To use the above reliability estimation method in 
practice, we need to know that the estimate is close to the 
extremum point. There is no guarantee for this, but in the 
RPE algorithm updating step it is assumed that the previous 
parameters actually minimized the cost function [11]. If this 
approximation were not a good one at each time, the 
algorithm would lose tracking and drift off into noise space. 
The fact that it is much used and recognized for its good 
tracking performance [11], as is also found here, constitutes 
a heuristic validation for the approximation.

Time

Figure 1. Gray-scale spectrogram of linear chirp in white 
noise, with frequency estimates overlaid (thick solid line).

For detection from a reliability measure of the 
parameter estimates, we need to convince ourselves that a 
reliable estimate only occurs when the adaptive notch filter 
is tracking a signal. The model is constantly looking for 
locally dominant frequencies, and even in white noise there 
are local time-frequency regions where the noise power is 
stronger. When signals are absent, the noise therefore 
produces a fluctuating parameter estimate. Figure 1 shows 
the evolution of a single component frequency upon moving 
from a noise-only section to tracking a signal (a linear 
chirp). It is apparent that the estimate fluctuates until the 
signal starts, but that as the algorithm starts to track the 
signal it becomes stable.

The background noise adds a stochastic component to

the reliability estimate. In zero-mean noise, we can 
theoretically remove the effect of this by calculating the 
expectation value of the Hessian before inverting it. 
However, this appears very difficult in any practical 
application. It is commonplace in adaptive estimation 
schemes to simply ignore the expectation operation and use 
the “raw” quantity instead, accepting that the estimate 
becomes more variable. This approach is also taken here.

4. APPLICATION

To apply our detection and characterization method to a 
signal, we first need to pre-whiten it. Here the background 
noise spectrum is equalized and normalized, and constant 
frequency tonals are also attenuated. This is necessary 
because the model describes the background noise as white. 
It also helps to remove unwanted components such as ship 
noise.

In this study, pre-whitening is implemented by 
estimating the noise magnitude spectrum and then dividing 
the total magnitude spectrogram by it, thus preserving the 
phase information. The noise power spectrum is estimated 
from spectrograms of long data blocks using order statistics 
such as the median and trimmed mean [19]. This approach 
allows us to estimate the spectrum from the noise- 
dominated smaller values of the spectrogram only.
An alternative approach more suitable for streaming data is 
to estimate the noise power spectrum from a moving 
average on the recording spectrogram. If the window is 
exponential no memory of previous data is required to 
update the noise spectrum estimate with current data. This 
method is fast and simple but its spectrum estimates are 
easily influenced by the presence of signals. It is therefore 
not used here.

The pre-whitening is the only processing step that 
operates on the spectrogram. We therefore subsequently 
inverse transform to obtain the pre-whitened time 
waveform. Then, the RPE parameter estimation algorithm of 
Table 1 is run on the whole signal. It is then interrogated for 
the diagonal elements of the inverse pseudo-Hessian matrix, 
S(n), at each time instant. The detection statistic used is 
developed from each of these elements on a logarithmic 
scale,

raw (n) = log10 S kk(n) (3)
This is referred to as the raw detection statistic. The 

logarithm makes its range more manageable. Note that the 
inverse Hessian diagonal elements decrease when the model 
starts to track a signal, so detections are made from small 
values of the detection statistic.

In white Gaussian noise (WGN), the raw detection 
statistics on different components are independent. Figure 2 
shows histograms of the detection statistics on components 
1, 2, and 3 for 100000 samples of WGN. The line shows the 
mean of the data fitted to a normal probability density 
function (pdf). As the figure shows, raw detection statistics
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on different components all have approximately the same 
distribution, which is well approximated by a normal pdf.
As predicted in Section 3, the raw detection statistic 
fluctuates rapidly and may be difficult to threshold. 
Therefore, a smoothing filter is applied to it. The smoothed 
detection statistic is a weighted linear combination of raw 
detection statistics, so is also approximately normally 
distributed on WGN input.

Figure 2. Histograms of raw detection statistics on 100,000 
samples of WGN, fitted to a Gaussian distribution.

The means and standard deviations of the smoothed 
detection statistics are used to define a simple detection 
threshold; for detection, we require that the smoothed 
detection statistic is lower than a specified number of 
standard deviations below the mean. Here, the Page test can 
be employed to improve the performance [20], and this will 
be investigated in the future.

To as far as possible prevent signals from affecting the 
threshold levels, we define an equal detection threshold for 
all components from the highest mean estimate and the 
smallest estimated standard deviation. A signal lowers the 
detection statistic, so we expect these estimates to be the 
least influenced by signal presence. We estimate the mean 
and the standard deviation of the detection statistic by 
averaging over the whole recording. Since the distribution 
of each detection statistic is approximately normal on WGN 
input, we use the median as a (nearly) unbiased estimator of 
the mean.

On streaming data one could instead estimate the mean 
and standard deviation of the detection statistic via sliding 
window averaging. It would then be possible to prevent 
signals from affecting the detection thresholds by only

updating the threshold estimates from non-tracking 
components. This approach was not taken here.

Despite the smoothing of the detection statistic, the 
algorithm also picks up short duration transients such as 
clicks. Cetacean clicks can be so much stronger than tonals 
that in the short processing window applied to the recording, 
they can contain more energy even in narrow frequency 
bands. Therefore, even if the model is tracking one or more 
tonals there is a high risk of it switching to tracking the 
dominant frequencies of the click. (Note that it is probably 
not possible to describe the click as a sum of constant 
frequency tonals even within our short analysis window, so 
the term “dominant frequencies” should be interpreted as 
the peak frequencies in the spectrum of the current analysis 
window.)

Disturbance to the tracking by clicks is of course 
undesirable. It could be avoided by lengthening the analysis 
window to reduce the ratio of click power to tonal power, 
but that would also reduce the tracking ability. An 
alternative is to introduce a pre-processing step, which 
detects clicks and reduces their influence. However, none of 
these measures have yet been implemented.

5. RESULTS

To illustrate the use of the proposed detection and 
characterization method, we commence by applying it to a 
simulated signal consisting of one linear and one non-linear 
chirp immersed in white noise. This signal is not intended to 
directly simulate a marine mammal call, although dolphin 
whistles usually have a narrow bandwidth and a smooth 
frequency evolution.

The amplitude of the linear chirp is constant at 7.9, 
whereas the non-linear one varies quadratically from 19.1 to 
9.6 (RMS value 16.2). White noise of variance 7.92 is added 
so that the effective average SNRs for the linear and non­
linear components are -3.0 and 3.2 dB, respectively.

The detection threshold is determined from the noise- 
only sections at the start and end of the signal. It is set at 2.5 
times the estimated standard deviation below the estimated 
mean. This gives a low false alarm rate. The normalized cut­
off frequency of the smoothing filter is 0.01, corresponding 
to an averaging length on the order of 100 samples.
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(c) (d)
Figure 3. The proposed algorithm applied to the simulated two-component signal. (a) Spectrogram of the signal. (b) 

instantaneous frequencies. (c) Detection statistics and threshold level (dashed). (d) Detected components.
Estimated

The results are shown in Figure 3. Subfigure (a) shows 
a spectrogram of the simulated signal. Estimated 
instantaneous frequencies can be found in subfigure (b). The 
evolution of the detection statistics on components 1 and 2 
are shown in subfigure (c). Finally, subfigure (d) shows the 
detected components. It is evident from Figure 3 that the 
frequency estimates are highly variable in noise-only 
sections, but quickly lock on to signals when they appear. 
The proposed detection statistic provides a good measure of 
the estimate reliability. Note that the estimate is less 
variable on the stronger component. This is to be expected, 
and is also reflected in lower detection statistics on this 
component. Concluding, as subfigure (d) shows, the method 
is capable of detecting and characterizing simultaneous 
components in strong background noise.

We now turn the attention to the problem of detecting 
marine mammal vocalizations in general, and North Atlantic 
right whales in particular. The "Report of the Workshop on 
Right Whale Acoustics: Practical Applications in 
Conservation" [21] classifies right whale calls as "gunshot",

"low frequency", or "high frequency". A gunshot call is 
what is usually referred to as a "click". It is an impulsive, 
broadband sound of duration less than 0.5 s. The low 
frequency sounds are narrowband, with duration of 0.2-5.0 s 
and frequencies around 70 Hz. Finally, the high frequency 
calls have durations of 0.5-3.0 s and fundamentals at 100­
600 Hz. A specific common type of high frequency call is 
the "FM upsweep". The duration of such a call is 0.5-1.5 s 
and its frequency rises monotonically in the band 100-400 
Hz. The FM upsweep call is thought to be used as a contact 
call. It is the most well known call of the North Atlantic 
right whale and to the best of the authors’ knowledge the 
only one species-specific enough for detection and 
discrimination from other whales with a reasonable degree 
of certainty.

Applying the present algorithm to the workshop dataset 
file L-138 results in a total of 486 detections, using the same 
threshold and cutoff frequency as for the simulated signal. 
Among these 486 detections, many are gunshot or click 
sounds, and many others are low-SNR calls split up into
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Figure 4. (a) Spectrogram of 20 s o f data from dataset file L-138, centered at the detected right whale call starting at 180.6 s. (b)
Detections extracted from this 20 s data batch.
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Figure 5. (a) Spectrogram of 20 s from dataset file L-138, centered at the detected right whale call starting at 213.4 s. (b)
Detections extracted from this 20 s data batch.

many detections. These are not of interest here as they 
cannot directly be used to identify HF upsweep calls. Only 
detections lasting more than 0.2 seconds -  155 in total -  are 
included in the search for right whales. Among these, 86 
have frequencies below 50 Hz and are likely to be fin whale 
calls. Out of the remaining 69 calls, 8 calls are identified as 
candidate right whale calls. These are between 0.3 and 1.5 
seconds long, start and end within 50 to 450 Hz, and sweep 
up at least 50 Hz.

These selection criteria are based on the reported 
characteristics of HF upsweep calls [21], “loosened up” to 
allow for algorithm imperfections. Three of these 8 
candidate right whale calls could directly be discarded 
because their frequency evolutions started low and almost

immediately jumped to a nearly constant higher frequency. 
This is probably caused by the detection firing too early on a 
strong and suddenly onset call. Future fine-tuning of the 
algorithm should alleviate this problem.

Four of the remaining sounds sweep up from 120-140 
Hz to 200-220 Hz in 0.4-0.6 seconds. The authors believe 
that these are right whale calls. Their start times are 
approximately 180.6, 213.4, 505.6, and 536.0 s. The last 
remaining candidate call, starting at 63.3 s, sweeps up from 
approximately 80 to 150 Hz in 0.4 s. This is probably too 
low frequency for a right whale HF upsweep call.
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Figure 6. (a) Spectrogram of 20 s from dataset file L-138, centered at the detected right whale call starting at 505.6 s. (b)
Detections extracted from this 20 s data batch.
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Figure 7. (a) Spectrogram of 20 s from dataset file L-138, centered at the detected right whale call starting at 536.0 s. (b)
Detections extracted from this 20 s data batch.

Subfigures (a) of Figures 4-7 show spectrograms of 20 
seconds of data centered on each right whale call; the data 
has been pre-whitened. Estimated frequency evolutions of 
all detections, that is also those shorter than 0.2 s, within 
these 20 seconds of data are shown in subfigures (b). These 
figures show that the proposed algorithm is able to track the 
frequency contour of the right whale calls. There are also 
several fin whale detections and some brief click detections. 
In Figures 4,6, and 7, note that the algorithm has also picked 
up on what are probably harmonics of the right whale call.

6. CONCLUSIONS

In this paper, we have described a new detection and 
characterization method for tonal marine mammal 
vocalizations, and have shown that the method works well 
with simultaneous sounds, in low signal-to-noise ratios, and 
with sounds, such as right whale calls, that do not appear to 
be strictly narrowband.

The method is simple to use and controlled by only a 
small number of user parameters. It has not yet been 
implemented in hardware, but in an off-line software
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implementation it processes data at a rate that exceeds that 
necessary for real-time implementation at sample rates of 
50-60 kHz.

The algorithm picks up and is disturbed by click 
sounds, so for a fully automatic operation it is necessary to 
attenuate these prior to application. Also, despite the 
smoothing of the detection statistic, calls are sometimes 
divided into several detections. To counteract this, one can 
apply a detection-merging algorithm, or change the 
detection criteria. These improvements will be studied in the 
future.
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