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1. INTRODUCTION

Numerical approaches based on finite element 
discretizations of Biot’s poroelasticity equations provide 
efficient tools to solve problems where the porous material 
is coupled to elastic plates and finite extent acoustic 
cavities. Sometimes, it may be relevant to evaluate the 
radiation o f a poroelastic material inside an infinite fluid 
medium. Examples include (i) the evaluation of the diffuse 
field sound absorption coefficient o f a porous material 
and/or the sound transmission loss o f an elastic plate with an 
attached porous sheet, (ii) the assessment o f the acoustic 
radiation damping of a porous material coupled to a 
vibrating structure. The latter is particularly important for 
the correct experimental characterization o f the intrinsic 
damping of the material’s frame. To date, the acoustic 
radiation of a porous medium into an unbounded fluid 
medium is usually neglected. The classical approach for 
modeling free field radiation of porous materials assumes 
the interstitial pressure at the radiation surface to be zero. 
This paper presents a numerical formulation for evaluating 
the sound radiation o f baffled poroelastic media including 
fluid loading effects. The problem is solved using a mixed 
FEM-BEM approach where the fluid loading is accounted 
for using an admittance matrix solid phase-interstitial 
pressure coupling terms. Numerical results will be presented 
during the conference in order to illustrate the technique.

2. THEORY
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Fig.1: Configuration of the problem

Consider a rectangular porous material sample inserted into 
a rigid planar baffle excited acoustically. The porous 
material is coupled to a semi-infinite fluid on one o f its face 
(excitation side) and has specific boundary conditions on the 
other faces. The modified weak integral form associated to 
the porous material is been given by [1]:
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n p and 5Qp refer to the porous-elastic domain and its 
bounding surface. u and p are the solid phase displacement 

vector and the interstitial pressure in the porous-elastic 
medium, respectively. U is the fluid macroscopic

displacement vector. Su and 8p refer to their admissible

variation, respectively. n denotes the unit normal vector

external to the bounding surface 5Qp. 4 stands for the 
porosity, p22 is the modified Biot's density o f the fluid

phase accounting for viscous dissipation, p is a modified

density given by p = p n  — where pu is the modified
P22

Biot's density o f the solid phase accounting for viscous 
dissipation. p12 is the modified Biot's density which 

accounts for the interaction between the inertia forces o f the 
solid and fluid phase together with viscous dissipation. 

ps and ss are the in-vacuo stress and strain tensors of the

(1)

porous material.

given by: 5s = a ‘ + < 1 + Q
R

p1. Note that 5s accounts for

structural damping in the skeleton through a complex 

Young's modulus E(1+j^s). Q is an elastic coupling 

coefficient between the two phases, R may be interpreted as 
the bulk modulus of the air occupying a fraction 4  o f the 
unit volume aggregate.

t is the total stress tensor of the material
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In this formulation, the porous media couples to the semi­
infinite fluid medium through the following boundary 
terms:
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Since 7  .n = — P R , at the excited surface, (2) becomes:
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In the semi-infinite domain, the acoustic pressure pa is the 
sum o f the blocked pressure pb and the radiated pressure pr. 
Applying the continuity of the normal displacement at the 
surface, (3) becomes:
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, the associated discrete form to theSince dP a /  = ,
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second term o f (4) is:
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where [C] is a classical coupling matrix given

by JL (N(M (M)}dr(M) and {n(M)} denotes the

vector o f the shape functions. The porous material being 
inserted into a rigid baffle, the acoustic pressure is related to 
the normal velocity using Rayleigh’s 
integral:
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where G (x,  y ,0, x ', y  ' , 0 ) = ------- is the baffled Green’s
2k R

function, k0 = ®/c0, is the acoustic wave number in the 

fluid, C0, the associated speed o f sound and R is defined by
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An associated integral form to (6) is given by:
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The associated discrete form is:

(Pp) [C ]( p ^  = —{Pp) [Z ]
dp,_

dn
(8)

with

[Z]=L In (N(MP (̂ M'){N(M’)}dr(M)dr(M’)

Since p p )  is arbitrary, one gets:
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Substituting (9) into (5), and recalling that on the interface 
p=pa=pr+pb, the discrete form of (3) reads finally:
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where [A] = 1 [C][Z]—1 [C] is an admittance matrix.
jmP0

The radiation o f the porous medium into the semi infinite 
fluid amounts to an added admittance term onto the 
interface interstitial pressure degrees of freedom and to 
additional interface coupling terms between the solid phase 
and the interstitial pressure (first terms in (10)). The last 
term involving Pb is the excitation term.

Using classical notations [1], the discretized form of (1) 
combined with (10) leads to the following linear system:
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with {Ff  } = -^ - [  A]{pb}.
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This system is first solved in terms of the porous solid phase 
nodal displacements and interstitial nodal pressures. Next, 
the vibroacoustic indicators of interest can be calculated.

3. CONCLUSION

This paper presented an approach to predict the 
sound radiation of baffled poroelastic media including fluid 
loading effects. The problem has been solved using a mixed 
FEM-BEM approach where the fluid loading is accounted 
for using an admittance matrix and solid phase-interstitial 
pressure coupling terms. The method has been considered in 
the case of an acoustic excitation but the approach is general 
and can be used as soon as the porous material is inserted in 
a rigid baffle and radiates into a semi infinite fluid. 
Numerical examples will be presented during the oral 
presentation in order to illustrate the technique.
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