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1. i n t r o d u c t i o n

The goal to our research is to produce a hearing-aid 
algorithm that would enhance the intelligibility of the 
hearing impaired in noisy conditions. For this we have been 
using machine learning techniques to derive the important 
statistical quantities describing the differences between the 
normal and impaired auditory systems auditory nerves. This 
leads to a technique we call Neurocompensation because it 
is essentially trying to re-establish the neural response of the 
auditory system after hair cell loss.

The main advantage from using the neural coding 
of the auditory nerve is it is the closest physical variable 
after the impairment. By encompassing the impairment, 
theoretically, the resulting algorithms should be better 
because they are free from simplifying assumptions. For 
example, by basing hearing-aid processing design on the 
audiogram alone, an implied assumption is that the loss of 
cochlear gain is the only important variable. This does not 
encompass the large differences in temporal and spectral 
properties between the normal and impaired auditory 
system.

2. METHOD

To apply machine learning to the auditory system 
we have a four component model:

1. A model of the normal auditory system up to the 
auditory nerve.

2. A model of the impaired auditory system that 
encompasses the hearing impairment, in this case 
we specifically look at processing lost with hair 
cell damage.

3. A processing block to train, a surrogate attempting 
to replicate the missing processing of the damaged 
system.

4. An error metric that is an intelligibility predictor, 
based on distortions to the auditory nerve.

An acoustic input is processed by the normal model to come 
up with a control signal, while the processing block 
preprocesses the same input before being passed to the 
impaired block which comes up with a distorted auditory 
response signal. The control and distorted signal are then 
compared to calculate how intelligible the distorted signal 
is. By maximizing the intelligibility of the distorted signal 
by training the parameters of the preprocessing block we are

really building a hearing-aid processor the restores what is 
important on the auditory nerve.

3. d i s c u s s i o n

The two auditory models were provided by Bruce 
et al. (2003). The error metric was first suggested in Bruce 
et al. (2002), and then improved into its useful form in 
Bondy et al. (2004). The metric is largely based on deriving 
a neural equivalent to the Articulation Index (AI); in fact the 
validation directly parallels Steeneken (1992), one of the 
modernizers of the AI, who suggested the now widely 
adopted Speech Transmission Index (STI). The error metric 
we derived is called the Neural Articulation Index (NAI) 
and showed a deviation of empirical intelligibility from 
prediction of about 8% versus the standard AI’s deviation of 
10%. This error was on a nonsense syllable, rippled filtering 
condition test, which has historically proven very hard to 
predict.

The last piece of the puzzle was the processing block. 
Several possible blocks and their responses to hearing 
impairment are given in Bondy et al. (2004b). The largest 
success was in predicting linear hearing-aid strategies. The 
Neurocompensator strategy showed that the NAL-R (Dillon, 
2001), a strategy very close to returning optimal 
intelligibility, is in fact minimizing the differences between 
the normal auditory nerve representation and the impaired 
one. We show the extremely close correlation of the NAL-R 
with the values calculated by the Neurocompensator 
approach. An example of optimizing the gain per dB of 
threshold shift through the Neurocompensator method is 
shown in Figure 1.
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Fig. 1. The x-axis the gain in dB for every dB shift from an 
audiogram mimicking the NAL-R’s gain ratio of 0.31. The X 
marks the NAL-R prescribed gain ratio, while the vertical bar is 
the Neurocompensator optimized value 0.32.
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The Neurocompensator also has the added advantage of 
being able to be tailored to an individual, by maximizing the 
gains and shape for a specific hearing loss. It is also hoped 
that it could deal with the variance in intelligibility for 
people with similar audiograms, which can be derived from 
different ratios of inner and outer hair cell loss.

While the Neurocompensator did very well predicting 
normal, linear fitting strategies, it had problems when trying 
to derive the optimal non-linear parameters. We found no 
set of time constants, compression knees and rates or 
channel setups that produced a higher intelligibility 
prediction (Bondy et al. 2003). To try to come to terms with 
this we optimized the gain in different time windows of 
speech. The best possible values produced a scatter 
“function” versus input RMS; there was no connection 
between the input power and gain requirements, past the 
mean, “linear” response. Our initial trial listening tests 
produced quality and intelligibility deficits, subjects often 
complaining about odd artifacts. We decided to look closer 
at the differences between the normal and impaired 
response. In general we say the mode rate may be the same, 
but the shape of the activity was very different. Generally 
the mode discharge rate between the Normal auditory 
response and the impaired auditory response after NAL-R 
preprocessing looks similar. There are some points that the 
normal discharge rate is larger than the impaired response 
and some points when it is much smaller.

In describing the statistical differences between the normal 
and impaired auditory nerve responses we saw that there 
was a loss of contrast between different auditory landmarks. 
The well known lessening of the suppression effect in the 
impaired ear correlates neighbouring frequency bands, while 
the healthy cochlea produces a negative correlation. The 
loss of suppression reduces the peak-to-trough ratio of 
spectral information. Similarly, in the time domain, the loss 
of adaptation reduces the temporal contrast as shown in 
Figure 2.

The important peak-to-trough ratio of the impaired response 
is not as large as the normal response, it is not in the same 
place, cresting at different times over frequency and the 
adaptation response is much wider.
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Fig. 2. Discharge rates for the normal and impaired auditory 
system with a 2 Hz 100% AM modulation applied to a tone at the 
best frequency.

That really defines an interesting formulation for the 
machine learning problem to address. Unlike our previous 
attempts which really were learning an average code and 
maybe not the important aspects of the AN responses, we 
are now looking at algorithms to reestablish suppression and 
onset/offset information in the impaired ear. We hope to 
address the fundamental question of segmentation 
enhancement for the hearing impaired. It is hoped that better 
segmentation will lead to more normal streaming, allowing 
the hearing-aid user the ability to unmask spectrally and 
temporally as well as a normal hearing person.
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