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1. i n t r o d u c t i o n

Blind Signal Separation (BSS) refers to the 
operation o f recovering a set o f  sources that are as 
independent as possible from another set o f  observed linear 
or non-linear mixtures. The term blind indicates that this 
operation is done without knowing the mixing coefficients. 
Although this problem is more difficult than the classical 
filtering problem, a solution is still feasible provided that 
some information about the original independent 
components is provided. Major attention in the literature has 
been focused on different criteria to be used as objective 
functions for BSS. However, most o f the existing on-line 
methods can be categorized as using a stochastic gradient. 
The need for second-order based algorithms for BSS can be 
easily revealed, as the fast convergence rate o f the 
Recursive-Least-Squares (RLS) based algorithms can be 
advantageous for many applications. Among the many 
existing objective functions for Blind Signal Separation, 
Maximum Likelihood and Negentropy stand as strong 
criteria which are well justified, as they minimize the 
mutual information between the original independent 
components [1],[2]. Maximum likelihood proved especially 
suitable for heavy tailed distribution signals, such as audio 
data [3].

In the case o f  pre-whitened inputs, the separating de-mixing 
matrix is constrained to be orthogonal, lying on a Stiefel 
manifold [4]. It is widely recognized that applying the 
constraints o f the Stiefel manifold to an optimization 
problem leads to a better performance o f the algorithm. 
Following the Stiefel geometry leads to a modified gradient 
rather than the ordinary gradient o f the objective function
[4]. The new constrained gradient is referred to as the 
natural gradient, for the pre-whitened case [4],[5]. A natural 
question would be how to extend and combine the 
performance o f the natural gradient with second-order based 
RLS algorithm. It is the objective o f this paper.

2. e x i s t i n g  m a x i m u m -l i k e l i h o o d  
b a s e d  a l g o r i t h m s

Let S/(n),i = 1,2, . . . , N  be scalar inputs (or 

sources) to the blind signal separation model at a time n .
For simplicity, it is assumed that the mixing is linear and 
that the mixing matrix is square, i.e. the number o f inputs N  

is equal to the number o f mixtures x, («). i = 1,2,

Therefore, the mixing matrix A is a square matrix of size 
N  x  N . The mixing model can be expressed as:

x(n) = A x  s(n) (1).

The mixture x is then applied to a whitening matrix v  . The 
resulting whitened mixtures in z  are expressed as:

z(n) = V x x(n) = V x A x  s(n) = B x  s(n) (2), 

where B is the resulting mixing matrix after the whitening 
stage. The purpose o f the blind signal separation algorithms 
is to estimate a matrix W  such that W x B  = i  NxN , where 

i  is an identity matrix. Then the outputs o f the separation 

process referred to as y j (n) would be identical to the 

source inputs S j  (n) . Maximum Likelihood targets a 

separation via increasing the likelihood between the outputs 

y j  (n) and the inputs S j  (n) [5]. In the case o f pre-whitened 

inputs, the cost function o f the log-likelihood L(W)  o f the 

de-mixing matrix W  can be expressed as:

L(W ) = El  ^  log p j (w jz) (3),
j=1

where E{  }refers to the expected value, w ,■ is the j th row of 

the matrix W  and p t ( )  is a probability density function. 

The above cost function has the gradient VL(W) as:

VL(W) = e | £  logg(y) z T I (4),

P  ‘where g (y t ) = —— and is usually set to 2 tanh(y t ) for super-
Pj

gaussian data, such as audio data. Pre-whitening also 
constrains the matrix W  to be orthogonal, meaning that 

W W  T = I N  x N  . This constraint places the optimization of 

the cost function on a Stiefel manifold, where the 
knowledge o f the differential geometry can be used to adjust 

the original gradient VL(W) to the natural gradient VL(W) 

which follows the geometry o f the manifold [6],[7]:

VL(W) = VL(W) -  W  VL(W ) W
(5).

= (g(y) y -  y g(y ) ) W
The natural gradient algorithm is based on taking the 
instantaneous value o f the update for the above gradient, so 
that the update equation becomes:
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W new = W oU + f! (y g(y)T -  g(y) y T ) W oU (6),

where fl  is the step size adequately set to 0.0005.

3. THE QUASI-RLS STIEFEL 
ALGORITHM

A time averaged approximation of the Hessian of 
the cost function is (except for a scaling factor of 1 -  A ):

Rnew = Ax  R oU + VL(W)_  xVL(W)Tvec} (7),

where VL(W) vec is a re-arrangement of the N  x  N  matrix

VL(W) as a vector of size N  x  1, via column stacking. The

resulting R is thus a matrix of size N 2 x N  2 . A is a 
forgetting factor close to 1, common in RLS algorithms. 
The update can thus be calculated as:

AWVec = R -1 xVL(W) vec (8).
The inverse of the quasi-Hessian matrix R , which is 
required for the above update, can be calculated recursively 
using the matrix inversion lemma as:

„ -1 R -1 old V l (W )V l (W ) t  r  
R old

old

A + V L (W )T R -1oid VL(W)
(9).

To enhance the robustness of the algorithm, the update 
calculated in (8) is projected on the Stiefel manifold as:

AW = WWT AWvec -  WAWvec W (10).

The new update is rearranged into a matrix AW of the 
original size N x N to be added to the current estimate of 
the matrix W :

Wnew = Wold +MRLS AW (11).

4. SIMULATION RESULTS AND 
PERFORMANCE COMPARISON

To compare the different BSS algorithms, tests were 
performed on a mixture of audio data files (speech) sampled 
at 8 kHz and of duration 3.7 sec. There were 4 sources 
considered, two male files and two female files. The choice 
of the speech files duration was made short to emphasize on 
the fast convergence property of the new algorithm. The 
mixing matrix chosen for this aural scene is rather harsh.
The comparison of the proposed algorithm is performed 
with the Natural Gradient based on Maximum Likelihood 
(NAG, step size !  set to 0.0005 [8]), and with the RLS- 

modified Natural Gradient (RLS-NAG). The RLS-NAG 
proposed in [8] suggests an RLS-update of the Natural 
Gradient algorithm by modifying the update from

AW = !  -  g(y) y T ] W (12)

to

AW = !  [I -  g(y) y T ] -1W (13)

with Q = g(y) yT and has the form of a covariance matrix. 

This update is applied on each element of W individually 
and convergence is obtained when Q is a diagonal matrix,

i.e. when the mutual information between g(y) and y is 

minimized. This algorithm works efficiently and provides in 
most cases a better performance than the ordinary Natural 
Gradient algorithm [8]. For the RLS-NAG algorithm fir is 
set to 0.008 while the forgetting factor is set to 0.991. For 
the new proposed algorithm, the step size ! RLS is set to 
0.12 and the forgetting factor A is set to be time varying 
starting at 0.9993 at time n=1 and ending at 0.9996 at 
n=10000. To evaluate the effectiveness of the separation 
algorithms, the PESQ scores (from ITU-T P.862 [9]) of the 
separated outputs y  (n) were computed. PESQ scores have 
values varying between -0.5 to 4.5, and higher values 
indicate a higher speech quality. The results of the above 
test are provided in Table 1. From this table, it can be seen 
that the proposed algorithm converges much faster than the 
other algorithms, as shown by the significant difference in 
the PESQ scores achieved by the different algorithms.

5. CONCLUSION

This paper presented a new algorithm named the 
Quasi-RLS Stiefel. This algorithm combines the principles 
of natural-gradient on differential manifolds (Stiefel 
manifold in our case) and RLS-based algorithms.
Simulation results quantified the good on-line convergence 
speed of the proposed algorithm and proved that the algorithm 
is very suitable for real-time Blind Signal Separation.

Table 1. PESQ scores for a mixture of 4 speech files
File New algorithm NAG NAG-RLS
Female1 3.244 2.311 1.293
Female2 3.310 1.732 1.641
Male1 3.643 1.807 2.288
Male2 3.201 1.753 1.475
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