DOUBLE-TALK DETECTION SCHEMES FOR ECHO CANCELLATION

Heping Ding\(^1\) and Frank Lau\(^2\)

\(^1\)Acoustics and Signal Processing, IMS, National Research Council, 1200 Montreal Rd., Ottawa, Ontario K1A 0R6
heping.ding@nrc-cnrc.gc.ca

\(^2\)Nortel Networks, Westwinds Innovation Center, 5050 40th St. NE, Calgary, Alberta T3J 4P8
franklau@nortelnetworks.com

1. Introduction

Widely used in telecommunications, an acoustic or network echo cancellation system, as Fig. 1 shows, subtracts an echo estimate \(y(n)\), made by an adaptive filter inputting the far-end signal \(x(n)\), from the desired input \(d(n)\) to reduce the echo \(u(n)\) therein while leaving the near-end signal \(s(n)\) intact. In order for \(y(n)\) to approximate \(u(n)\), the filter coefficients are updated by an adaptation algorithm seeking the minimum of the mean of \(e^2(n)\) so that the adaptive filter converges to mimic the echo path. Fundamentals of adaptive filtering and echo cancellation can be found in a text book, such as [1].

In a practical echo canceller, the adaptation should be a) active when there is little \(s(n)\) - so that the filter can converge; and b) halted if \(s(n)\) is significant - to prevent the filter from diverging. The key element in controlling this is a so-called double-talk (DT) detector, which detects conditions where \(d(n)\) contains a significant near-end signal \(s(n)\) mixed with a much stronger \(u(n)\) (e.g., 25 dB stronger in a typical speakerphone application), echo of the far-end signal \(x(n)\). It is a challenge in academia and industry to find DT detectors that do this job with few misses and false alarms.

2. Scheme 1: Out-of-Telephony-Band Level

In telephony, \(u(n)\), linear echo of \(x(n)\), has a frequency bandwidth of about 300-3400 Hz, the same as that of \(x(n)\). On the other hand, a voice \(s(t)\) usually has a wider band, i.e., containing energy outside of this range, and, in a speakerphone, \(d(t)\) with a wider band can be readily available since its acoustic source is local. Thus, a DT condition can be claimed if \(d(t)\) contains significant energy outside of the telephony band.

Fig. 2 shows the proposed scheme, where \(d_2(n)\) is the analog input \(d(t)\) sampled at 16 KHz, double the telephony system’s sampling rate. In addition to being decimated to form the needed \(d(n)\), \(d_2(n)\) is band-stop filtered, ridding components within 300-3400 Hz and retaining those within 50-300 Hz and 3400-7000 Hz, for level estimation and decision making.

Simulations with various talkers and speech samples were performed. Fig. 3 shows a typical example, where \(d_2(n)\) contains an \(s(n)\) 25 dB weaker than \(u(n)\) so that it looks almost the same as \(u(n)\). This big level difference makes DT detection difficult for some conventional schemes, but the proposed scheme correctly identifies places of significant \(s(n)\).

Scheme 1 effectively detects \(s(n)\) masked by a much stronger \(u(n)\) if a wider band \(d(t)\) is made available by the electronics; therefore, it is suitable for speakerphone applications.

Typical existing DT detection schemes are reviewed in a separate paper [2] and will not be discussed here. This paper presents two new schemes, see for example [3] and [4]. These schemes have been demonstrated to be pretty reliable, robust, and simple.

\(*\) Heping Ding was employed by Nortel Networks during development of the work presented in this article. Nortel Networks owns intellectual property rights associated with the work and this article.
3. Scheme 2: Orthogonality Principle

Comparing levels of various signals in Fig. 1, an energy comparison scheme, discussed in [2], can detect the presence of $s(n)$ or a non-convergence echo (uncancelled echo due to non-convergence of the adaptive filter), in $e(n)$, but it cannot distinguish between the two, because either of them results in the same fluctuations in signal levels. Assuming that $s(n)$ is uncorrelated with $x(n)$, the proposed Scheme 2 does the distinction by evaluating the inner product $E[e(n)y(n)]$, where $E[\cdot]$ stands for expectation.

Considering the adaptive filter to be L-tap FIR and with
\[
\begin{align*}
\mathbf{x}(n) &= [x(n) x(n-1) \ldots x(n-L+1)]^T, \\
\mathbf{R}(n) &= E[\mathbf{x}(n)\mathbf{x}^T(n)], \\
\mathbf{W} &= \begin{bmatrix} w_0 & w_1 & \ldots & w_{L-1} \end{bmatrix}^T, \\
\end{align*}
\]
where the expectation of interest can be found as
\[
E[e(n)y(n)] = (\mathbf{w}^{\text{opt}} - \mathbf{w})^T \mathbf{R}(n) \mathbf{w},
\]
the expectation of interest can be found as
\[
E[e(n)y(n)] = (\mathbf{w}^{\text{opt}} - \mathbf{w})^T \mathbf{R}(n) \mathbf{w},
\]
where \mathbf{w}^{opt} is the optimal value of the filter coefficient vector \mathbf{w}. Once the adaptive filter has converged, i.e., $\mathbf{W} = \mathbf{W}^{\text{opt}}$, Eq. (2) vanishes - whether there is an uncorrelated $s(n)$ or not. If the adaptive filter has not converged, Eq. (2) will in general be non-zero - although not guaranteed, it is so in practice. This can also be understood intuitively in an infinite-dimensional Hilbert space, in which $x(n)$, ..., $x(-\infty)$, $y(n)$, $d(n)$, and $e(n)$ are vectors. $d(n)$ consists of: $u(n)$ being a linear combination of $\{x(n), ..., x(-\infty)\}$, and $s(n)$ being not. A linear combination of $\{x(n), ..., x(n-L+1)\}$, the optimum $y(n)$, $y^{\text{opt}}(n) = \mathbf{x}(n) \mathbf{w}^{\text{opt}}$, can resemble part of $u(n)$, but not the uncorrelated $s(n)$ or the residual echo due to under modeling. $y^{\text{opt}}(n)$ is the projection of $d(n)$ onto the sub-space occupied by $\{x(n), ..., x(n-L+1)\}$ and is orthogonal to the projection error $e(n)$.

To summarize, $E[e(n)y(n)]$ becomes small with a converged adaptive filter, regardless of $s(n)$, and is large in magnitude if the filter has not converged.

With ensemble means replaced by time averages, the scheme is implemented as
\[
R_{ey}(n) = \beta R_{ey}(n-1) + (1 - \beta)e(n)y(n)
\]
\[
A_{ey}(n) = \beta A_{ey}(n-1) + (1 - \beta)|e(n)y(n)|^2,
\]
where $0 < \beta < 1$ is a forgetting factor to provide a low-pass smoothing effect, and $A_{ey}(n)$ gives a reference for evaluating the magnitude of $R_{ey}(n)$. When the energy comparison part claims a candidate for the presence of either $s(n)$ or a non-convergence echo in $e(n)$, a distinction is made as per
\[
\begin{align*}
R_{ey}(n) > T_{\text{echo}}A_{ey}(n) & \Rightarrow \text{Candidate is non-conv. echo} \\
R_{ey}(n) < T_{s(n)}A_{ey}(n) & \Rightarrow \text{Candidate is } s(n),
\end{align*}
\]
where the thresholds $0 < T_{s(n)} < T_{\text{echo}} < 1$ are experimentally determined.

Unlike Scheme 1, this scheme does not need a wider band $d(n)$, and therefore is suitable for general echo cancellation.

Simulations with similar conditions as that with Scheme 1 were performed, with an example shown in Fig. 4. It is seen that $e(n)$ contains both $s(n)$ and non-convergence echoes, as results of a non-converged adaptive filter after echo path changes. An energy comparison based DT detection scheme is only able to spot these $e(n)$ level increases as candidates for either of the two events, while the proposed Scheme 2 clearly distinguishes between them by raising the non-convergence flag if Eq. (4) is satisfied, or the $s(n)$ flag if Eq. (5) is met.

4. Summary

This paper presents two DT detection schemes which, compared to other existing ones reviewed in [2], are reliable, robust, and relatively simple in terms of implementation. Both schemes have been verified in simulations and Scheme 2 has further been incorporated into acoustic and network echo cancellation products.

References

Fig. 4. Simulation result for Scheme 2