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1. i n t r o d u c t i o n

Research in Automatic Speech Recognition (ASR) has 
been very intense in recent years with focus given to 
accuracy and speed issues. To achieve good accuracy, the 
employed techniques usually rely on heavy computations. 
Agbago and Barrière [2] earlier defined a Three-Stage 
Architecture (TSA) framework for ASR composed of (1) 
pre-processing stage, (2) phoneme recognition stage, and (3) 
natural language post-processor stage. Within that TSA 
framework, our present focus is to improve the speed of 
Stage 2 which looks specifically at the comparison of low 
level speech units. It is different from several systems that 
include HMM processes in this Stage (e.g. Shawn’s [5]). 
We present a new algorithm called Parallel Recognizer that 
is 320 times faster than a standard Two-Level Dynamic 
Programming (TLDP) [3]. In comparison, working on speed 
at low-level, Nkagawa [4] got a reduction factor of 4 to 6 
the time needed to compute local distances in the improved 
DP algorithm of Sakoe [6].

2. p a r a l l e l  r e c o g n i z e r

A Knowledge Base of Reference Phonemes (KBRP) 
provides English speakers’ phoneme models. To identify 
the phonemes which are part of a speech segment, our 
Parallel Recognizer algorithm uses a principle of best-fit in 
an open competition for all phonemes in the KBRP. It can 
also embed heuristics that might reduce the search space 
such as clustering KBRP into a lesser number of models.

2.1 Principle

Parallel Recognizer must take an input speech segment 
(hereafter T) and recognize it as a sequence of phonemes. 
These phonemes, already encoded into cepstrums, are 
selected from the reference base KBRP. In an attempt to 
reduce the search space during comparison task, heuristics 
are applied to pre-select some of the units (disqualify 
unvoiced facing voiced, etc.) that could match parts of 
segment T. The Parallel Recognizer’s originality is that, 
every reference unit competes and scores a distance value 
with respect to any possible part of T. This sounds like 
processing a DP algorithm but it differs by the number of 
combinations to process that is normally far less than the 
binomial combinations employed by TLDP.

The algorithm opens a matching competition to fill 
segments of T starting from every frame of it (see section
2.2 for segment definition). It fixes the starting frame but 
gives the freedom to every competitor reference unit to find 
the optimal length of T it can best match from that frame 
(position). Consequently, the number of combination in the 
comparison is reduced from n2 to almost n (plus the optimal 
length computation overhead) as shown in Figure 2.1 where 
the computation for every node of a matrix space is reduced 
to a vector space (every row).
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Figure 2.1: Computation combination comparison 

over the frames of the input utterance T.

The matching process generates a sorted pile for every 
frame position to the end of T. Using the piles as a lattice of 
segments we can form numerous chains of segments 
(hypotheses) by concatenating the best of any pile that 
comes in a consecutive order. The final result is the best 
hypothesis of these, based on conditions of our choice: best 
total chain distortion, fewer/larger number of composing 
units, etc. The hypotheses can be converted into strings of 
the ARPABET symbols of the reference speech units.

2.2 Segment Object definition and ordering Principle

Parallel Recognizer relies on an entity we call segment. 
It has a beginning and an ending position or a length but it 
encapsulates a third distortion parameter that represents the 
distance scored from the matching of this segment X in its 
entire length to a part of another segment Y starting from 
frame STARTPOS for a length LENGTH. So, we define a 
segment object (entity) as:
SegO=SegmentObject(X, Y, StartPos, Length, Distortion);

During our comparison process, reference units are 
successively replacing X and Y is the input segment T. As 
the resulting pile of segment objects needs sorting, a 
comparator rule should be defined upon them. The rule 
could be anything reasonable as how two segments should 
be ranked. For our experiments, we used the following:
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- Order 1 (default): based on starting frame position of 
segments; used for forward chaining o f hypotheses.

- Order 2: based on ending frame o f segments to backtrack 
position to the beginning o f a hypothesis.

- Order 3: based on distance to find the closest hypothesis.

The choice o f a rule may influence accuracy but not the 
speed and since our focus is on the latter, we did not 
evaluate the impact of these different options on the former.

2.2 Strengths and weaknesses

The possibility to choose parameters on which 
hypotheses are sorted makes Parallel Recognizer very 
flexible. The segment pile technique generates plenty and 
fu ll  length strings o f  phonemes (no guess o f length) as 
compared to TLDP that outputs length from  1 unit to a 
given pre-guessed length L. This is an advantage for an NLP 
post processing stage (Stage 3 o f TSA) to complete the task. 
The use of heuristics to reduce search spaces can become 
weaknesses if  they get too heavy in computations just like if  
naïve methods were used to perform the sorting process.

3. EXPERIMENTS AND RESULTS

In Agbago and Barrière [2], we have presented a Fast 
Two-Level Dynamic Programming (F-TLDP) approach 
which already was 5 to 20 times faster than standard TLDP. 
So, we tested Parallel Recognizer against F-TLDP using an 
input speech T (“she had your dark suit”) and KBRP speech 
units (a teen phoneme models for every ARPABET symbol) 
that we derived from TIMIT. Only the execution time o f the 
algorithms was considered excluding the overhead time to 
compute cepstrums features. Figure 3.1&2 show their 
contrast with respect to clustering KBRP and the length of 
the input T. Using the analysis o f Figure 3.1, the test for 
Figure 3.2 is done in the case o f no clustering (N=1) and the 
worst performance o f Parallel Recognizer (N=80) compared 
to F-TLDP. Parallel Recognizer is 4 to 16 times faster than 
F-TLDP or an overall o f 320 times faster than TLDP. The 
peak in the performance o f Parallel Recognizer corresponds 
to the valley in the performance o f F-TLDP [2] which meant 
better performance of F-TLDP.
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Figure 3.1: Parallel Recognizer vs. F-TLDP as a function o f N  
the number o f  phoneme clusters in KBRP. PARR = Parallel

Time Reduction PARR vs FTLDP = f(variation of number of clusters)

Recognizer and TR = time reduction

Figure 3.2: Comparison graph between FTLDP and Parallel 
Recognizer as a function o f  the length L o f  the input speech 
utterance T. PARR = Parallel Recognizer

4. CONCLUSION
W ith the concept o f concurrency (parallel) matching of 

phonemes in KBRP to an input T using our defined segment 
entities, we succeeded to convert the matrix computation 
space o f TLDP to a vector space (Figure 2.1). It corresponds 
to a significant compressing from a computation order o f n2 
towards n. The result is 16 times speed increase o f Parallel 
Recognizer over F-TLDP with the advantage of numerous 
hypotheses output for Stage 3 o f the TSA. The speed result 
is independent o f the segment ranking chosen but the choice 
may have an impact on accuracy.

Agbago has detailed elsewhere [1] that within the Stage 
2 (presented here) o f the overall Three-Stage Architecture 
framework, the accuracy o f the results depends on an 
autonomous unit that evaluates the distortion between 
utterances (segments in this case). In this paper, focus has 
not been accuracy but speed improvement and it shows 
quite interesting results.
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1. INTRODUCTION

One of the simplest ways to model the activity in a 
neural spike train is to use a Poisson process. However, the 
conventional homogeneous Poisson process (HPP) is not 
compatible with the results collected from past studies. For 
example, the pulse-number distribution (PND) extracted 
from an HPP will follow a Poisson distribution with a mean- 
to-variance ratio of one. On the other hand, several studies 
have indicated that the ratio is not unity but is 
approximately equal to 2 across the dynamic range (e.g.
Teich and Khanna, 1985). Additionally many features in 
the behaviour of real sensory neurons such as rate 
adaptation, rate-intensity dependence and a dead time in 
spike activity require that modifications be made to this 
model.

Based on these concerns, the HPP was modified and 
extended to give a more realistic stochastic model that 
expressed quantitatively the properties of auditory neurons.
The predictions of the model with respect to the mean-to- 
variance ratio will be taken as an indication of whether the 
new model outperforms the conventional HPP-based model.

2. METHOD

In an HPP, the inter-event intervals 1 1,2,_ which 
specify (in our case) the interval been spikes are governed 
by independent exponential random variables with a 
probability density function f  (tn = x) = XT e - X T x (Leon- 
Garcia, 1994). X is a constant representing the spike count 
within a fixed time window T. The exponential distribution 
was used as a basis from which the new model was 
developed.

Figure 1. The idealised firing rate behaviour with respect to 
stimulus duration and sound intensity level for a peripheral neuron.

2.2 Dead Time Modifications

A fixed value t  was used to denote the dead time 
during which the neuron cannot be activated further. In our 
model, the inter-spike interval was set equal to the sum of 
the time value generated by the firing probability function 
and the dead time t . This process is known as a dead-time- 
modified Poisson Process (DTMPP).

2.1 Firing Rate Modifications

We discarded the fixed spike rate X and used in its 
place a rate function X(L, t), where L is sound intensity 
level and t is stimulus duration. This function was 
constructed based on the measurements of rate adaptation 
(Litvak, et al., 2003) and intensity dependence (Yates, et a l, 
2000; Smith, 1988). Please see Figure 1. With a non
constant firing rate, the process we have described is known 
as a non-homogeneous Poisson process (NHPP).

Figure 2. A screen shot of the program in MATLAB.

We implemented our stochastic model within MATLAB.
To study the effects of the different components on the 
mean-variance ratio, a simple command program was 
written in MATLAB to control the different parameter 
values (Figure 2). A flowchart illustrating the difference 
between the various simulations is shown in Figure 3. Each

Canadian Acoustics / Acoustique canadienne Vol. 32 No. 3 (2004) - 150


