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i n t r o d u c t i o n

Geoacoustic inversion infers seabed properties 
from acoustic measurements in the water column. A typical 
assumption in geoacoustic inversion is that the data errors 
are uncorrelated and obey certain statistics, e.g., are 
Gaussian distributed. However, real data often show strong 
error correlations. In the past, this has been dealt with by 
sub-sampling the data to a point where correlations 
disappear. However, sub-sampling the data is always a trade 
off between reducing correlations and loosing information.

This paper considers pre-processing of synthetic single 
bounce reflection-loss data with strongly correlated data 
errors to improve application of a nonlinear Bayesian 
inversion to recover geoacoustic parameters from a 
viscoelastic model. Correlated Gaussian errors are generated 
using a realistic synthetic covariance matrix derived from 
experimental measurements [1]. The inverse problem is 
solved with fast Gibbs sampling [2], which provides 
parameter estimates and credibility intervals by sampling 
the posterior probability density. The error correlations are 
taken into account by estimating a covariance matrix from 
the data residuals obtained from a solution to the inverse 
problem. This covariance matrix is then used in the cost 
function of the fast Gibbs sampler. The recovered 
covariance matrix is compared to the original and stringent 
statistical tests are applied to the data residuals to illustrate 
the benefits of this rigorous error treatment. The geoacoustic 
parameters of the viscoelastic model are clearly resolvable 
and show reasonable error bounds for correlated errors.

2. Method

The pre-processing of fast Gibbs sampling [2] to 
apply it to synthetic data with correlated data errors involves

three basic steps. First, zero mean Gaussian noise n \  of 

standard deviation 1 is generated for each frequency f . In 

a second step, the noise is then correlated using a covariance 

matrix for each frequency C ('d‘ ) . This can be done by 

forming the Cholesky decomposition of the matrix

Fig. 1. Original (left) and recovered (right) covariance matrices for 
1600 Hz.

where L is the lower triangular matrix. Then, calculating

(2) n  = Ln't

gives noise that is drawn from a Gaussian distribution with

respect to the data covariance matrices C ('d‘) at each

frequency. The noise is then added to the synthetic data that 
were computed with a forward model that calculates the 
plane wave response of the sub-bottom as a function of 
frequency and angle.

To recover C (di ) residuals n~i are calculated from

predicted and real data. The predicted data are calculated 
from a maximum likelihood model that is found by applying 
global optimization to determine the geoacoustic model 
parameters which best fit the noisy data. The autocovariance

can then be calculated as a function of n~i . Theoretically,

the covariance should be calculated as an ensemble average. 
In reality, however, we have access to only a single finite 
subset of the random process. By assuming an ergodic 
process, we replace the ensemble average by an average 
over angles, and the jth element of the autocovariance

function for the finite subset n~i can be estimated as

1 Ni -  j - 1

(3) j  ) = —  X n i ( k  + j ) n i (k )  ,
—  i k =0

(1) C {d'd) = l l t
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Fig. 2. First row of original covariance matrix and recovered 
covariance matrix after one iteration for a frequency of 1600 Hz.

Fig. 3. (a) Fit o f predicted data (solid line) and synthetic data with 
correlated errors and (b) the residuals that clearly show the 
correlations for 1600 Hz. (c) and (d) show the normalised 
autocovariance of the residuals with and without the recovered 
covariance matrix was taken into account, respectively.

where N t is the number o f angles at frequency f . Every 

term c j d‘) then builds one diagonal in the symmetric

covariance matrix. The normalisation factor N i does not

strictly result in an average but rather damps terms in eq. (3) 
that do not have many samples to average over and hence 
have higher uncertainty. The covariance matrix estimate can 
be iteratively improved. by using the estimates in 
subsequent global optimizations. The recovered covariance 
matrix can then be used in the Gibbs sampler by 
implementing the likelihood function L for multiple 
frequencies

(4) L(m) exp(-nT(C(d)) 1 nt) ,
i=1

where F  is the number o f frequencies and m is the model.

3. RESULTS

The data set used here contained 8 frequencies in a 
band from 300 to 1600 Hz with different numbers o f angles 
at each frequency (between 54 and 131 data points at each 
frequency). For simplicity, the results are illustrated with 
only one frequency, 1600 Hz. The covariance matrices used 
here are taken from an analysis o f real data collected in the 
Strait o f Sicily [1] that showed strongly correlated errors.

Fig. 2 compares the original and the recovered covariance 
matrix after one iteration for 1600 Hz. It can be seen that 
there is a close match between the two. Inversion results 
(not shown here) with the two matrices show that both the 
recovered models and the parameter uncertainty bounds are 
very close as well.

Fig. 3 (a) and (b) show the fit o f the predicted data to the 
synthetic data, and the residuals. It is obvious that the data 
have strong correlations. Fig. 3 also shows the auto 
covariance function for the data residuals and for residuals 
to which the Cholesky decomposition o f the recovered 
covariance matrix was applied by

(5) =  L

These two plots indicate that the recovered covariance 
matrix is capable to take all important correlations into

account. To statistically quantify the effect o f using C ), a 

runs test was performed. The data residuals ni strongly fail 

the runs test (p < 0.001), whereas the data residuals ni
easily pass the tests (p = 0.39). In the inversion, the 
geoacoustic parameters show more realistic uncertainty

bounds if  C(di) is used in the energy function. It is thus

important to correctly treat error correlations if  reasonable 
uncertainties are to be estimated from the data.
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