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a b s t r a c t

For optimization problems based on dynamic criteria the system eigenvalues must be re-computed for each 
iteration as the values o f the design parameters are changed. From a computational point of view it would 
be more efficient to replace the laborious process o f determining the eigenvalues by direct prediction. The 
suitability and advantages o f this scheme are examined here. The number o f operations required by the direct 
and the predictive solution algorithms are compared. The prediction scheme has been applied to the problem 
o f maximizing the separation o f two adjacent eigenvalues for structural and couple fluid-structure systems.

s o m m a ir e

Les problèmes d ’optimisation basés sur des critères dynamiques doivent obtenir les valeurs propres de système, 
qui dépendent directement des valeurs des variables de conception. Pendant le processus d ’optimisation la 
fonction objective est calculée à plusieurs reprises pour chacun nouvel ensemble de variables de conception, 
et alors une alternative plus économique du point de vue informatique devrait prévoir les valeurs propres 
pour le nouvel ensemble de variables au lieu de résoudre le problème encore. Ainsi, le but de ce travail 
est de déterminer la convenance et les avantages d ’employer la prévision de valeurs propres, au lieu des 
solutions directes, dans les itérations pendant le processus d ’optimisation. Puis, le nombre d ’opérations entre 
la solution directe et prédictive du système est comparé pour une itération principale pendant l’optimisation. 
Généralement, il est nécessaire de résoudre le système ou de le prévoir plus d ’une fois pour avancer à la 
prochaine itération principale; la prévision est meilleure dans ce cas-ci, parce qu’elle doit calculer seulement 
la sensibilité des valeurs propres une fois pour une itération principale de l ’algorithme. Après, une analyse 
d ’erreur des valeurs propres et des vecteurs propres prévus est faite en vue de limiter la portée de la prévision 
dans le processus d ’optimisation. L’analyse est faite pendant la maximisation d ’espace entre deux valeurs 
propres adjacentes sur les systèmes structuraux et couplés de fluide-structure, modifiant une certaine variable 
structurale géométrique précédemment définie du modèle fini d ’élément.

1. INTRODUCTION

It is common to find cases where two or more systems 
interact with one another. Those situations where it is not 
realistic to model each system independently o f the others 
are known as coupled systems. Fluid-structure interactions 
belong to this class: neither the fluid domain nor the struc­
tural domain can be solved independently, as the forces at the 
interfaces exert a significant influence.

The problem of fluid-structure dynamic interaction is 
analyzed herein. It has applications in the analysis of sound 
transmission through the walls of pressure vessels, ducts, and 
vehicle cabins. Even though the displacements imposed on 
the fluid are assumed to be small, it is not possible to de-
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couple the motions o f the fluid and the solid.
It is inevitable that resonances will occur in such sys­

tems. These may reduce the sound transmission properties, 
and may even lead to structural failures. Thus it is desirable 
to identify these resonances, and, if  possible minimize any 
adverse effects by re-designing the structure. It is during the 
re-design phase that optimization is employed.

Problems involving incompressible fluids are commonly 
referred to as hydro-elastic problems. Here the effects o f fluid 
compressiblity are to be ignored, resulting in an elasto-acous- 
tic problem. The systems are assumed to suffer but small 
perturbations about stable equilibrium points. This renders 
the governing equations in the fluid to be acoustic in nature 
and structure is considered to be a linear elastic solid.
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Within this frame work it is important to chose 
appropriate variables that describe the system response. In 
the fluid domain displacement, pressure, velocity potential, 
or a combination thereof can be used. Here the non- 
symmetric u-p formulation and a finite element method 
have been chosen. Here u is the displacement of the 
structure and p  is the pressure in the fluid. This choice is 
appropriate for the types of systems analyzed below.

Deneuvy [1] was one of the first to study coupled 
systems with a view to optimizing certain dynamic 
parameters. The goal was to design an optimal structure 
where separation of two adjacent natural frequencies was 
the design objective. One of the difficulties encountered 
was the choice of an appropriate convergence parameter that 
was needed to stabilize the optimization scheme.

More recently Pal and Hagiwara [2, 3] studied the 
optimization of noise level reduction in a coupled structural- 
acoustic problem. The objective was to minimize the 
changes in the design parameters to reach a predetermined 
response. Their method could only deal with those cases 
where the acoustic and structural resonant frequencies of the 
systems matched.

2. OBJECTIVE
Optimization problems based on dynamic criteria make 

use of the system eigenvalues, which in turn depend on the 
design variables. The optimization process requires that the 
objective function be calculated repeatedly. This re­
computation is time-consuming for most systems. It would 
be desirable to be able to predict the eigenvalues for the new 
set of design parameters that are being identified during 
each loop of the iteration. The objective of this work is to 
determine the suitability and advantages of eigenvalue 
prediction.

The advantages of the proposed scheme is judged by 
the match of the predicted eigenvalues and eigenvectors 
with those derived by direct computation. Also, there 
should be a computational savings in terms of the number of 
floating point operations -flops- . Flops counting is a rather 
basic approach for evaluating the efficiency of a program or 
algorithm in as much as memory traffic and other operations 
associated with the operation of the code are not counted. 
Golub and Van Loan {4} argue that flops counting is a 
simple, but inexact accounting method that captures but one 
of the many factors that influence the computational 
efficiency of a code. Nevertheless, we believe that flops 
counting is adequate to test the viability of the predictive 
method. Also, the flops counter is a convenient feature of 
the Matlab software that was used to perform the necessary 
computational analysis.

3. ANALYZED SYSTEMS
3.1 Structural system SE3 -  bi-fixed beam of 

circular cross section

Li and circular cross sections of inertia moment I,. Possible 
control variables are the cross sections areas of the 
elements, Ai, or their diameters, fa. The structure has 
Young’s modulus E  and density ps. LT is the total length of 
the beam.
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Figure 1. Structural system SE3
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3.2 Structural system SE4 - bi-fixed beam of 
rectangular cross section
This system is a bi-fixed beam under flexure with 

rectangular cross section of unitary width, b, as shown in 
Figure 2. The beam is modeled with elements of length L, 
and cross sections of inertia moment I,. Possible design 
variables are the cross sections areas of the elements, Ai, or 
their heights, e,. It is observed that the mass matrix varies 
linearly and the rigidity matrix varies with the cube of the 
height, e.

The structure has Young modulus E  and density ps, and 
the total length of the beam is LT. Structural system SE4 is 
classified as being of order 3, due to the exponent of the 
relation between the inertia moment and the area, I=A3/12, 
for the unitary width.

3.3 Fluid-structure system SFE1 - reservoir
The fluid-structure coupled system consists of a 

rectangular two-dimensional acoustic cavity of H=40m 
height and Lj=20m length, as shown in Figure 3. This model 
was presented previously by Olson and Bathe [5], Grosh 
and Pinsky [6] and Sandberg [7] among others; being a 
classical example where the basic phenomenon of the fluid- 
structure coupling can be evidenced. Boundary conditions 
are rigid sidewalls (R.W.) and free surface (F.S.) at the top; 
while the bottom side is modeled as a bi-fixed beam of 
rectangular cross section in flexure and unitary width, 
initially of square shape with uniform height of 1 m.

The structural system SE3, as shown in Figure 1, 
consists of a bi-fixed beam where the elements have length
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Figure 3. Fluid-structure system SFE1

Design variables are the heights o f the beam elements, 
although the areas o f the cross sections can also be used. 
The system is classified as being o f order 3, due to the 
exponent of the relation between the inertia moment and the 
area o f the structural cross section, 7=A3/12.

3. PERFORMANCE VERIFICATION OF 
THE PREDICTIVE FORMULAS
The sequential quadratic programming algorithm, 

implemented in the commercial software Matlab®, was 
used in this work, supplying the analytical expressions of 
the gradients o f the objective function and the restrictions.

For verifying the numerical performance o f the 
predictive formulas, regarding the number o f float point 
operations, the fluid-structure coupled system SFE1 was 
studied, choosing as design variables the heights o f the 
structural elements which had a variation o f up to 15%.

Figure 4 shows the quantity o f flops and analyzed 
modes for solving the eigenvalues and eigenvectors problem 
just once, using both solution and predictive processes. It is 
observed fewer flops if  the predictive option is used for few 
modes.

The solution process uses the sptarn©  function supplied 
with the Matlab® Partial Differential Equation Toolbox©. 
The sptarn©  function solves problems o f generalized 
eigenvalues o f the (A-AB)x=0 system in the [lb,ub] interval, 
where A  and B  are sparse matrices, x  is the vector of 
independent variables, lb and ub are lower and upper limits 
o f the searched eigenvalues. The sptarn©  function uses the 
Lanczos method initially with jmax=100 base vectors, 
requiring a jmax*DOF workspace where DOF is the number 
o f degree o f freedom o f the system.

Flops
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Figure 4. Flops with modes for solving the SFE1 system once

Commonly, the algorithm stops when a sufficient 
number o f eigenvalues converge; nevertheless, as the 
number o f base vectors was maintained constant throughout 
the process, the quantity o f flops in the interval varied little 
(Figure 4).

The quantity o f flops, when the system is solved twice 
for a main iteration o f the optimization, using the solution 
and predictive processes, is shown in Figure 5. In this case, 
the quantity o f flops is fewer with the predictive option for 
all analyzed modes, which justifies its use for optimization 
o f these systems, where many cycles must be performed for 
any iteration.

From these results it can be concluded that when it is 
used the predictive formulas in coupled fluid-structure 
systems, more efficient algorithms can be obtained 
regarding its computational cost. However, special 
techniques for solving the eigenvalues and eigenvectors 
problem can lead to situations more favorable to the solution 
process [7].

4. ACCURACY EVALUATION OF THE 
PREDICTIVE FORMULAS
An error analysis is carried out for the predicted 

eigenvalues, these calculated with the Rayleigh quotient 
method o f Equation (1). Other error analysis is carried out 
for the predicted eigenvectors, these calculated with the 
finite difference method o f Equations (2) and (3). The 
analyses are realized as a function o f the allowable variation 
o f the design variables. The aim o f this study is to verify the 
validity o f the predictive formulas, in such a way that the 
optimization processes can adequately converge.
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Figure 5. Flops with modes for solving the SFE1 system twice
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A*j is the j*  eigenvalue and A j ) is the j th predicted 

eigenvalue of the modified system, K* and M* are the 

modified rigidity and mass matrices, DF ) and f D ) are 

the jth left and the jth rigth predicted eigenvector of the 

modified system using the finite difference method, and

are the j th left and the j th right eigenvector of the

modified system, DF ) and f j DF ) are the j th left and the 

j th right predicted eigenvector of the modified system 

calculated with the finite difference method, f  .and f  are 

the j  left and the j*  right eigenvector of the coupled 

system, f  .and f  are the derivatives of the j th left and the

j th right eigenvector of the coupled system in relation to the 
structural variable e, and Ae is the variation of the structural 
height.

In order calculate the eigenvalues error, it was 
necessary to place in-phase the eigenvectors obtained by the 
predictive process, <fp r e d ic tion,  in relation to the eigenvalues 
obtained by the solution process, </>s o iu tion ,  according to 
Equation (4),

solution t prediction

v solution r  solution

l<  °,
I > 0,

prediction 

f prediction

prediction 

f prediction

(4)

For evaluating the error of the predicted eigenvector, 
erro f p r e d ic tio n , it was used the Euclidian norm that defines the 
error as,

e rro fprediction prediction solution (5)

First, the structural system SE3 was analyzed, where the 
beam was discretized in 20 elements, which means 30 DOF. 
The system variables are the areas of the elements with a 
random variation between specified intervals, keeping 
unchanged the initial volume and the symmetry of the beam.

Figure 6 shows a maximum error of 0.96% in the 
prediction of the first ten frequencies, value found for a 
simultaneous variation of the areas of up to 25-30%. This 
error is smallest than the maximum error of approximately 
5% obtained by Fox and Kaapor [8], who only studied the 
first three frequencies of a fixed-free beam of circular cross 
section, with a diameter variation of up to 30%.

Percentage of error of the predicted frequencies

Percentage of variation of the areas 
Figure 6. Prediction error of the first ten frequencies of the 

SE3 system

The curves in Figures 6 to 11 are not labelled because 
the principal interest is to analyze the maximum error of the 
first ten predicted eigenvector and eigenvalues. 
Additionally, it is observed that the errors of the first 
frequencies do not correspond necessarily with the lower 
curves of the graphs.

Figure 7 shows a maximum error of 10.48% in the 
prediction of the first ten modes of the system SE3, taking a 
variation of the design variables of up to 25-30%. It is 
observed that for a variation of up to 10-15%, the maximum 
error is 2.45%, which is acceptable for optimization terms.

For obtaining major conclusions about modal error of 
the prediction, the SE4 system was studied. The bi-fixed 
beam is discretized in 20 elements, producing a model with 
38 DOF. The system variables are the heights of the 
elements, with a random variation between specified 
intervals, keeping unchanged the initial volume and the 
symmetry of the beam with a unitary width.
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Figure 7. Prediction error of the first ten eigenvectors of the 
SE3 system

Figure 8 shows a maximum error of 7.28% in the 
prediction of the first ten eigenvalues, for a simultaneous 
variation of the variables of up to 25-30%. This value is 
higher than the 0.96% of the second order SE3 system, and 
higher than the maximum error of about 5% obtained by 
Fox and Kapoor (1968). This result shows the error 
increasing as a function of the non-linearity order given by 
the exponent of the relation between the inertia moment and 
the area, I=kAn.

Percentage of error of the predicted eigenvalues

Percentage of variation of the heights 
Figure 8. Prediction error of the first ten eigenvalues of the 

SE4 system

is important to remind that in practice the variables do not 
vary simultaneously in the same way.

Percentage of error of the predicted eigenvectors

Percentage of variation of the heights

Figure 9. Prediction error of the first ten eigenvectors of the 
SE4 system

Finally, the error of the modal prediction of the third 
order SFE1 system is studied with the aim to establish 
conclusions on the prediction of eigenvalues and 
eigenvectors in coupled systems. The variables of the 
system were the heights of the elements, whose variation 
were made randomly in the intervals previously specified, 
maintaining the initial volume and the symmetry of the 
beam with an unitary width. It is observed that the order of 
the exponent of the relation between the moment of inertia 
and the area is three, identical to the previously analyzed 
case.

It is observed, from Figure 10, a maximum error of
0.42% in the prediction of the ten first frequencies for a 
simultaneous variation of the variables of up to 25-30%, 
value sufficiently lower than the maximum error of 7.28% 
of the SE4 structural system. Some explanation originates 
by the fact that the error of the six fluid predominant 
frequencies must present a low value, because they vary 
little when the structural heights are modified. On the other 
hand, for the structural predominant coupled frequencies,
1.e. frequencies 2nd and 3rd, the maximum error is lesser for 
the coupled case compared with the structural case of the 
system SE4.

Figure 9 indicates a maximum error of 30.58% in the 
prediction of the first ten eigenvectors, for a variation of the 
design variables of up to 25-30%. Moreover, it is observed 
that up to a 10-15% variation, the maximum error was 
7.27%, value that could be high for the optimization, but it
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Figure 10. Prediction error of the first ten frequencies of the 
SFE1 system

Figure 11 shows a maximum error of 9.60% in the 
prediction of the first ten natural modes, for a variation of 
the heights of up to 25-30%. This value is lower than the 
maximum error of 30.58% for the SE4 structural system. It 
is also observed that for a variation of the variables of up to 
10-15%, the maximum error of the predicted eigenvectors 
was 2.38%, which is lower than the maximum error of 
7.27% in the system SE4.

Percentage of error of the predicted eigenvectors

:luid-structure system
Elements (fluid = 200, str. = 10, interface = 10) 
DOF , = 128, design variables = 10.

been applied to a coupled fluid-structure system with the 
aim of optimizing the separation of two adjacent 
frequencies. The eigenvalues are predicted using the 
Rayleigh quotient and the eigenvectors are predicted with 
the aid of a finite difference scheme. The prediction 
formulas are restrained by certain conditions during the 
optimization process. These are in the form of the 
maximum allowable variation of the design variables.

The results suggest that the method is suitable for the 
optimization of structural and coupled fluid-structure 
optimization problems. Care must be taken to constrain the 
maximum variation of the design variables to values no 
greater than 10-15%.
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Figure 11. Prediction error of the first ten eigenvectors of the 
SFE1 system

5. CONCLUSIONS

A methodology of using predictions for eigenvalues 
and eigenvectors has been presented. The formalism has
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