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1. i n t r o d u c t i o n

Estimating seabed geoacoustic parameters from 
ocean acoustic fields measured at an array o f sensors 
represents a challenging but important nonlinear inverse 
problem. In a Bayesian approach, the posterior probability 
density (PPD) o f the unknown geoacoustic model 
parameters is formulated in terms o f the data information 
(represented by an appropriate likelihood function) and 
independent prior information [1, 2]. PPD properties such 
maximum a posteriori (MAP) model estimates (i.e., the 
most probable parameters) and marginal probability 
distributions for each parameter can be computed 
numerically using global optimization [3] and Markov- 
chain Monte Carlo integration methods [1, 2], respectively.

The likelihood function represents the conditional data 
uncertainty distribution interpreted as a function of the 
model parameters for the (fixed) measured data. Hence, 
specifying data uncertainties is an important component of 
Bayesian inversion. Data uncertainties must include both 
measurement error (e.g., errors due to instrumentation and 
ambient noise) and theory errors (due to the simplified 
seabed parameterization and idealized treatment o f the 
forward problem). Theory errors, in particular, are difficult 
to estimate independently, and in most cases physically 
reasonable assumptions are required about the form o f the 
uncertainty distribution. To date, data errors have been 
assumed to be Gaussian distributed and spatially 
uncorrelated (i.e., represented by a diagonal covariance 
matrix). However, the assumption o f uncorrelated errors is 
often not valid due to theory errors. Neglecting significant 
error correlations represents the data as more informative 
than they actually are, and leads to under-estimating 
parameter uncertainties. In this paper, data-error correlations 
are estimated to form a full covariance matrix which is 
explicitly incorporated into the inversion procedure.

2. THEORY

Matched-field geoacoustic inversion is based on 
estimating a model m of seabed geoacoustic parameters by 
matching complex (frequency-domain) acoustic pressure 
fields d f measured at an N-sensor array at f= 1 ,F

frequencies. Assuming the data errors are complex Gaussian 
distributed random variables uncorrelated from frequency to 
frequency but spatially correlated with covariance matrix Cf 
at the f-th  frequency, the likelihood function is given by

F 1
L(m) «  —-exp[-rf  (m )T C -  r f  (m)], (1)

f=11 c f 1

where rf  (m) = d f  -  d f  (m) are data residuals (difference

between measured and modelled data) and T represents 
conjugate transpose. The MAP model m is computed by 
minimizing a mismatch function consisting o f the negative 
log-likelihood plus a term representing prior information.

Under the usual assumption o f spatially uncorrelated errors,

the covariance matrix is diagonal, C f  = a f  I. In this case,

the MAP estimate for the standard deviation is

a f  =| rf (in) |2 / N . However, if  significant error

correlations exist, the diagonal approximation is inadequate. 
Assuming the data residuals represent an ergodic random 
process, a non-parametric estimate o f the full covariance 
matrix is given by

C j =  Y[rk( m ) - r (m)]* [rk+|i-j|( m ) - r (in)]/ N, (2)
k=1

where r represents the residual mean and the subscript f  is 
suppressed for clarity. Covariance elements that are located 
far off the main diagonal represent error correlations 
between widely spaced data points. These are expected to be 
small and are often poorly estimated due to the small 
number o f samples in the average. Hence, it is generally 
beneficial to damp off-diagonal terms, e.g., by applying a 
cosine damping function. Since the MAP model is required 
to estimate the covariance but the covariance is itself 
required to estimate the MAP model (in the log-likelihood 
function), the above procedure must be applied iteratively.

The validity o f the covariance estimate can be examined a 
posteriori by considering standardized residuals

w f (in) = [C -1/2]T rf (in), (3)

where C-12 represents the inverse o f the Cholesky 

decomposition (square root) o f the covariance matrix. If  the 
covariance estimate is valid, w f  should represent an

uncorrelated random process: this can be examined 
qualitatively by plotting the autocorrelation o f w f , with a
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narrow central peak indicating uncorrelated residuals. 
Quantitative statistical tests can also be applied to the 
standardized residuals (e.g., one-tailed runs test).

Finally, matched-field methods are typically employed 
without knowledge of the (complex) source spectrum. In 
this case, a maximum-likelihood estimate for the source 
strength can be derived [1, 2], leading to the substitution

d f (m) d f

d f(m) ^  !.. m 2 d f (m) (4)7 | d f (m) |2 f

in the above equations.

3. INVERSION EXAMPLE

Bayesian geoacoustic inversion with full- 
covariance estimation is illustrated here for ocean acoustic 
data measured in the Mediterranean Sea off the west coast 
o f Italy near Elba Island [3]. Linear frequency-modulated 
signals (300-800 Hz) were transmitted from a ship-towed 
source at approximately 10-m depth and recorded at a 48- 
element vertical line array that extended from 26-120 m 
depth in water 132-m deep. The inversion here is for a 
source transmission at a range of approximately 4 km. The 
seabed was parameterized as a two-layer model with an 
upper sediment layer o f thickness h and sound speed c1; 
density p 1 and attenuation a 1 overlaying a semi-infinite 
basement with parameters c 2, p 2 and a2. Small corrections to 
the source range and depth and water depth were also 
included in the inversion, but are not discussed here.

Fig. 1 shows examples o f the (complex) covariance matrices 
estimated from the acoustic data, and indicates that the 
spatial correlation scale decreases with frequency. Fig. 2 
shows marginal PPDs for the geoacoustic parameters 
computed using both full covariance-matrix estimates and 
variance-only estimates. The uncertainty distributions based 
on variance-only estimates are overly optimistic for all 
geoacoustic parameters compared to the full-covariance
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Fig. 2. Marginal probability distributions for geoacoustic 
parameters computed using full covariance matrix estimates (Cov 
Est) and variance-only estimates (Var Est).

estimates, in some cases indicating unrealistic parameter 
sensitivity (e.g., a 1, a2, p 2). Finally, Fig. 3 shows that 
incorporating full covariance matrices in the inversion leads 
to essentially uncorrelated standardized residuals, indicating 
that the error correlations have been accounted for correctly 
in the inversion.
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Fig. 1. Covariance matrices at 300 and 800 Hz (real part on left, 
imaginary part on right), normalized by amplitude of real part.

Fig.3. Autocorrelation of standardized residuals (real part) for 
variance only estimates (left) and full covariance estimates (right).
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