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1. i n t r o d u c t i o n

Efficient analysis and processing of audio signals 
would lead to a better utilization of computer vision and 
machine learning technologies in automating audio related 
applications. Audio and speech are highly non-stationary 
signals with a time-varying spectrum. It is difficult to 
analyze them using simple signal processing tools. Most of 
the existing techniques segment the audio signals and 
assume the signal to be quasi stationary within the short 
periods and apply stationary signal processing tools. 
However these approaches suffer from fixed time-frequency 
resolution and cannot accurately model the time varying 
characteristics of the audio signals. An adaptive joint time- 
frequency (TF) approach would be the best way to analyze 
audio signals.

The two well-known time-frequency approaches are based 
on 1. Signal decomposition, and 2. Bilinear TF distributions 
(also known as Cohen's class) [1]. In order to perform an 
objective analysis and to extract useful parametric 
information, the TF decomposition based approach would 
be ideal. Hence, the proposed methodology uses an adaptive 
TF transform (ATFT) based on the matching pursuit (MP) 
algorithm with Gaussian TF functions [2].

Majority of the audio and speech applications perform some 
combination of the following operations: (i) Compression 
and (ii) Feature extraction (for pattern recognition), and (iii) 
Denoising. The output specification for each of the above 
operations is grossly different. This paper is an attempt to 
present the proposed adaptive TF technique as a unified 
methodology (block diagram shown in Fig. 1) in addressing 
all the above operations on audio and speech signals. The 
paper is organized as follows: Section 2 covers the 
methodology comprising the subsections of ATFT, audio 
compression and audio & speech classification. Section 3 
covers the time-width versus frequency band mappings. 
Discussion and Conclusions are given in Section 4.

2. m e t h o d o l o g y

2.1 Adaptive time-frequency transformation

The core of the proposed methodology lies in the 
adaptive TF transformation based on the MP algorithm. MP, 
when used with a dictionary of TF functions yields an
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adaptive time-frequency transformation [2]. In MP any 

signal x(t) is decomposed into a linear combination of K 
TF functions selected from a redundant dictionary of TF 
functions g (t) as given by

,  (t ) - g  - i . g f exp 0  ( 2 f t  .<»,)) a  is
n -  0 - \ s n  V S n J

the expansion coefficient, the scale factor sn also called as

octave or time-width parameter is used to control the width 
of the window function, and the parameter pn controls the

temporal placement. The parameters f n and <j>n are the

frequency and phase of the exponential function 
respectively. The signal is projected over a redundant 
dictionary of TF functions with all possible combinations of 
scaling, translations and modulations. At each iteration, the 
best-correlated TF functions to the local signal structures are 
selected from the dictionary. The remaining signal called the 
residue is further decomposed in the same way subdividing 
them into TF functions.

2.2 Audio compression

In the audio compression application, we first 

modeled the audio signal (5s segments at 44.1k/s) with K 
number of TF functions that either captures 99.5 % of the 
signal energy or to a maximum of K  =10,000. The TF 
decomposition parameters ( an, s n, p n, f n, ) were

analyzed and a novel TF psychoacoustics model was 
applied to discard the perceptually irrelevant TF functions. 
The perceptually filtered K  TF functions were then 
quantized using 54 bits/ TF function. A curve fitting 
technique was used on the energy an parameter to

significantly further reduce the total number of bits. An 
audio database containing 8 stereo signals of 20s long were 
used for testing. Compression ratios as high as 40 were 
achieved with an average SDG (subjective difference grade) 
of -1.1. The proposed technique performed exceedingly well 
for classical type of music compared to the existing 
techniques.

2.3 Audio and Speech Classification

A database of 170 audio signals containing 6 
groups (rock, classical, country, folk, jazz and pop) of music
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signals were decomposed using the ATFT algorithm. The 
octave parameter sn demonstrated high discrimination

between the classes of signals. The octave distribution was 
computed over three frequency bands and used as features. 
A set of 42 features were extracted and used in classifying 
the six music groups. A classification accuracy of 97.6 % 
was achieved [3].

A database of 212 speech signals containing 51 normal and 
161 pathological signals were used in the study. The 
distribution of octave parameter, the energy an capture rate

and center frequency f n of the TF functions demonstrated

high discriminatory behavior between the normal and 
pathological signals. 3 features were derived and used for 
classifying the normal and pathological signals. A 
classification accuracy of 93.4% was achieved [4]. A 
sample energy an capture curve and octave sn distribution

are shown in Figs. 2(a) and 2(b). ATFT’s inherent capability 
of denoising [2] helped in both the above discussed 
compression and classification applications to remove the 
insignificant signal components.

3. TIME-WIDTH VS FREQUENCY 
BAND MAPPING (TWFB)

Often when TF visualization of a signal is 
required, a TFD is constructed. Classical TFDs are non 
parametric and lacks the flexibility to relate visual patterns 
with a model or decomposition parameters. A more ideal 
choice of visualization would be that which preserves the 
parametric benefits of the decomposition. The idea is to 
generate a TF subspace mapping using the decomposition 
parameters that would serve as a (1) good parametric 
visualization tool, (2) an organized subspace mapping and 
(3) flexible TF subspace extractor that could address various 
denoising/ source separation problems. Of the five TF 
decomposition parameters discussed, ( an, sn & f n ) would be

more appropriate to generate a subspace mapping. We form 
a 3D visualization by accumulating the energy for every 
combination (tile) of ( sn & f n ). The step size of ( sn & f n )

decides the resolution of the visualization. Figs. 2(c) to 2(f) 
show the spectrogram & TWFB mappings of a clean speech 
signal and a noisy speech signal (AWGN at 5dB). One can 
clearly see from Fig. 2(f), the tiles corresponding to the 
noise standing out separately. TWFB map is sensitive to 
signal structures; hence we could easily filter out or separate 
signal components that differ in structural content. This 
ability to segregate structural signal components can also be 
used to characterize different classes of (audio) signals.

Fig. 1: Block diagram of the proposed methodology

4. DISCUSSION AND CONCLUSIONS

A unified adaptive TF decomposition based 
methodology for processing audio and speech signals was 
presented. The proposed non-stationary signal analysis tool 
performed well with diverse operations related to audio and 
speech applications. The proposed methodology is 
computationally expensive but considering the rapid 
hardware advancements this should not pose a problem in 
near future. A novel TWFB mapping was introduced which 
demonstrates high potential to form as a versatile parametric 
visualization/pattern recognition tool.
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Fig. 2: (a) A sample energy capture curve, (b) A sample octave 
distribution, (c) Spectrogram of clean speech, (d) Spectrogram of a 
noisy speech (5dB), (e) TWFB map of a clean speech, (f) TWFB 
map of a noisy speech signal (5dB) showing distinctly the tiles 
corresponding to noise signal components.
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