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1. i n t r o d u c t i o n

The pressure fields radiated by baffled circular pistons have 
been studied extensively by the acoustics community [1]. 
Since many realistic transducers have a velocity profile that 
varies in the radial direction, the field generated by 
axisymmetric radiators is an important application [2,3]. In 
an earlier work, the authors derived a fast nearfield method 
(FNM) for pistons that have a spatially uniform velocity [4]; 
and in this paper, the FNM is extended to radiators with a 
radially varying normal velocity. This fast nearfield method 
is implemented and compared with the standard Rayleigh 
integral approach.

2. THEORY

Consider a circular piston of radius a lying in the x-y plane 
surround by an infinite, rigid baffle. Assume a lossless, 
homogeneous medium with density p  and sound speed c.

The single-frequency pressure Pa ( r ,  z ;6 )  generated by

this piston with a spatially uniform velocity of unity is given 
by the fast nearfield method (FNM)

P a ( r ,z;6 ) = —  J 
n  I

r cos/ - a

r + a - 2arc o s /

e ~  j k ^ r 2+ a 2 +z2 - 2 a r  cos /  jk z  d /

(1)

where r and z are the radial and axial observation 
coordinates, respectively. Eq. (1) is derived and analyzed in 
terms of error and speed in [4]. To extend Eq. (1) to the 
more general apodized piston, define an apodization 
function q(s) the gives the normal velocity of the piston as

function of radius s. As noted by [5], the pressure field 
generated by this apodized piston is synthesized by 
decomposing the circle of radius a into evenly spaced 
concentric annuli. Fig 1 illustrates this concept. By 
allowing the number of annuli to approach infinity, the 
following expression is derived:

u

P(r, z ;6 )  = J-8Ps (r ,z  ;a>) 

8s
q(s) ds (2)

Fig. 1: Schematic illustrating how an apodized piston is 
decomposed into contributions from concentric annuli.

By assuming that the normal velocity vanishes on the 
boundary of the piston (q(a) = 0), Eq. (2) is integrated by 
parts, yielding

a ^

P(r, z; a>) = -  \— Ps (r, z; (6) ds 
0 8s

Substituting Eq. (1) into Eq. (3) yields the final result

(3)

a n

P a z;6) =  - p -  J  q,( s)s J- r cos/ - a

3.

n  0 0 

jk -^r2+a2 +z2-2 a r  c o s /  ^  -  jk z

m e t h o d s

r2 + a2 - 2arc o s / (4)

d  /  ds

Eq. (4) is valid for any radial apodization. One choice for 
the aperture function is

q(s) = 1 -  (s / a )n (5)

where n is a fixed integer. A rigid piston corresponds to n = 
0, whereas a simply supported piston piston is modeled by n 
= 2 [3]. Although Eq. (4) is difficult to evaluate 
analytically, the double integral can be evaluated 
numerically via Gauss quadrature or other standard 
quadrature rules.
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4. RESULTS

A reference pressure field generated by a circular radiator of 
radius 1.5 mm operating at a frequency of 2.5 MHz is 
evaluated for a parabolic apodization (n=2). In order to 
compare Eq. (4) with the Rayleigh integral, a reference field 
is evaluated with 160,000 point Gauss quadratue rule on an 
axially offset 21 by 75 point grid with quarter-wavelength 
spatial sampling. Figure 2 shows the normalized pressure 
amplitude. The apodized beam pattern is more spatially 
bandlimited than a rigid piston beam pattern; in addition, the 
beam pattern in Fig. 2 lacks the on-axis nulls that 
characterize the unapodized piston’s pressure field.

The Rayleigh-Sommerfeld integral representing the 
apodized pressure field was also evaluated using the point 
source method [6]. Both the FNM and point source 
approaches were implemented in the C programming 
language and executed on a 3.0 GHz Pentium IV processor 
running Red Hat Linux. The FNM and point source method 
are evaluated with varying numbers of quadrature points. 
The resulting peak normalized errors and computation times 
are summarized in Tables 1 and 2.

Fig. 2: Normalized pressure amplitude fo r a parabolic radiator 
(n=2) with radius a=2.5 mm, or 2.5 acoustic wavelengths. Eq. (3) 
was evaluated with a 1000 by 1000 Gauss quadrature on an 
axially offset 21 by 75 point grid with quarter-wavelength spatial 
sampling.

6. CONCLUSION

5. DISCUSSION

Unlike the Raylieigh-Sommerfield integral, the FNM 
embodied in Eq. (4) does not expereince any numerical 
difficulty near the piston surface. This smooth behavior 
leads to a more rapid convergence with respect to number of 
quadrature points. As evinced by Tables 1 and 2, the FNM 
requires 0.0064 seconds to achieve 10% peak error, whereas 
the point source approach requires 0.0258 seconds; thus the 
FNM achieves a speedup by a factor of 4 at 10 % error 
level. At 1 % error, FNM achieves a speedup factor is about 
4.9 relative to the point source approach. Reduced 
computation times may be possible by implementing the 
grid-sectoring method described in [4].

A time-domain analog of Eq. (4) can also be obtained for 
transient excitations. This time-domain expression may 
prove useful in evaluating scattered and pulse-echo fields 
generated by imaging transducers.

Table 1. Quadrature points need for specified peak error.
10 % Error 1% Error

FNM 40 105
Point Source 140 442

A fast nearfield method has been derived for radially 
apodized circular pistons. Since this method is numerically 
well-behaved at all observation points, convergence is 
accelerated as compared to the point-source approach. A 
speedup on the order of 4 is achieved at 10 and 1 % peak 
errors.
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Table 2. Computation times need for specified peak error.
10 % Error 1% Error

FNM 0.0064 s 0.0165 s
Point Source 0.0258 s 0.0809 s
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