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1. i n t r o d u c t i o n

The angular spectrum approach (ASA) is 
essentially a Green's function method that computes the 
field by multiplying the source and the Green's function, or 
propagation operator, in the spectral domain. Some ASA 
applications use the analytical Fourier transform of Green’s 
function as the propagator [1]-[3]; however, this method 
suffers from wrap-around error and aliasing. In the far field, 
large errors are produced because of the truncation of the 
spatial Green’s function. This paper presents a multi-planar 
angular spectrum approach based on the analysis of the 
errors. The additional source planes at the path of 
propagation reformulate the spatial propagator and 
compensate for the truncation errors.

Most investigations apply the ASA to planar sources, 
including single transducers and arrays. The ASA for 
cylindrically curved radiators has also been studied by Wu 
[4]. This paper will focus on the application of ASA on 
spherically focused circular pistons.

2. THEORY

1.1 Angular spectrum approach

The convolution relationship for the waves 
diffracted from finite apertures is

p(x,y,z) = po(x,y,zo) ® h(x,y, z ) , 1 
where p0(x, y,z0) is the source pressure in plane z0 and 

p(x,y,z) is the pressure in other planes. For time harmonic 

wave excitation, the spatial propagator h(x, y, z) can be 

represented by [5]
a 7

h(x,y,z) = ----- - (1 + jkd)e—jkd, 2
2nd3

where k=2rc/X is the spatial wavenumber, Az = z — z0 and

d = yjx 2 + y2 + Az2 . If p(x,y,z), p0(x,y,z), and h(x,y,z) are

transformed into spectral domain by 2D FFT, and Eq. 1 
becomes

P(kx,k y,z) = P0(kx,k y,z)H(kx,k y,z) , 3

where kx, ky, and kz are angular frequencies of the 
decomposed plane waves. The wave number

k = .^kx + ky + k 2 is constructed from these angular

frequency values.

Numerical implementations of these expressions sample the 
spatial fields at an interval of 5 in both x and y dimensions. 
Each pressure field input is confined to an L x L square area 
and sampled by an M x M grid. M is preferably an odd 
integer so that the source is symmetric with respect to the 
origin. To avoid problems with circular convolution, the 
source plane is zero padded and enlarged to an N x N 
matrix. In general, the accuracy of angular spectrum 
method is influenced by the spatial sampling rate, the size of 
the computational grids, and the angular resolution of 
spectra.

1.2. Spatial propagator and propagation distance

For a uniform sampling rate and field size, the 
errors produced by the ASA vary as a function of depth.
The errors generated by the spatial propagator are 
encountered in two distinct regions. First, as Az ^  0 a 
singularity appears at the origin of h(x,y,z), the steep slope 
of the signal makes adequate sampling impossible. Thus, 
the computation of the ASA in the region Az<1X-2À, 
consistently produces a relatively large error. Second, as Az 
increases, the wavefront spreads over larger region. A plane 
that captures most of the energy in the near field often 
includes much less energy in the far field. If a significant 
portion of the power is lost due to truncation, the resulting 
spectrum is distorted.

3. METHODS

2.1 spherically focused piston

Accurate fields of spherically focused pistons can 
be computed as reference by impulse response algorithm [6] 
with a high sampling rate. The excitation frequency is 
1MHz and acoustic velocity is 1500m/s for the simulation. 
Lossless media is assumed in these simulations.

2.2 Error evaluation

The normalized peak error is defined as the 
amplitude of the maximum error normalized by the peak 
pressure in one plane according to the expression

maxx,y I p (x,y,z) — pref(x ,y,z ) l 
"Hmax = | , s | ,

maxx,y | pref(x ,y,z)|

where pref(x,y,z) is the reference pressure, and 

p(x, y, z) is the pressure computed by the ASA. The
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notation maxx,y indicates that the error is evaluated in a 
transverse plane.

2.3 Multi-planar scheme

An adaptive computing algorithm propagates the fields 
along z direction and places multiple source planes 
according to a threshold. First, the errors are evaluated as a 
function of depth and the position where the error first 
exceeds the threshold is identified. This determines the 
location of the next source plane, and the fields in 
subsequent planes are computed from this source plane until 
the error threshold is again exceeded. The same process is 
repeated until all of the source plane locations are 
determined. The error within a short distance of the first 
source plane may exceed the threshold, but if the error drops 
below the threshold after one or two wavelengths, the points 
adjacent to the initial plane are discarded.

4. RESULTS

The multi-planar ASA is demonstrated for a spherically 
focused piston with diameter 2a=16cm and radius of 
curvature R=16cm. The normal evaluated at the center of 
the spherical shell, which is coincident with the z-axis, 
defines the origin of the Cartesian coordinate system. The 
computational volume is 16.2cmx16.2cmx32.75cm sampled 
at an interval of 5=l/2=0.075cm. Each plane is zero-padded 
to 512x512 points, and then a 2D FFT is evaluated. The 
adaptive multi-planar algorithm allocates five source planes, 
and this restricts the peak error to values below 5%. Figure 
1 is an illustration of the pressure field in the y=0 plane.
This result is obtained from source planes positioned at 
z=2.25cm, 4.5cm, 11.1cm, 21.45cm and 29.4cm.

Figure 1: Illustration o f  the pressure generated by a spherically 
focused piston computed with five source planes.

Figure 2 shows the peak errors as a function of depth. The 
solid line is computed by the initial source plane at 
z=2.25cm. With a single source plane (solid line), the error 
grows rapidly beyond the focus. Shortly thereafter, the error 
reaches 100%. The dashed line is the multi-planar result 
computed from five source planes. This result shows that 
the multi-planar approach maintains an error of 5% or less 
throughout the computational grid.

z(cm)

Figure 2: Peak errors as a function o f  depth. The solid line 
represents the error produced by one source plane at z=2.25cm, 
and the dashed line describes the error obtained with five source 
planes.

5. DISCUSSION

Since the inadequate truncation of the spatial 
propagator is one source of error, increasing the size of the 
sampled grid is expected to reduce the peak error.
However, in order to include 90% of the energy in h(x,y,z) 
at depths of z=10cm and 30cm, the extent of the sampled 
grid should be 27.2cm and 81.6cm, respectively. This 
calculation would require an excessive amount of computer 
memory. The multi-planar scheme reduces numerical errors 
by efficiently utilizing memory resources without adding a 
significant computational cost.

6. CONCLUSION

The calculations of pressure fields from spherically 
focused piston using ASA often suffer from truncation 
errors in the far field. The multi-planar ASA compensates 
for the error by adding additional source planes and 
achieves much greater accuracy.
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