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1. i n t r o d u c t i o n

Computing the transient pressure field generated by large 
phased arrays is helpful in designing ultrasound imaging 
systems. Methods for computing the transient near-field 
pressure of a planar aperture include the point-source 
method [1] and the spatial impulse response (SIR) method 
[2,3,4]. Recently, a rapid single integral approach has been 
developed for computing the time domain pressure 
generated by a baffled circular piston [5]. This solution is 
applied to a 129 element focused phased array and 
compared to a similar computation made using Field II [6].

2. THEORY

A time domain solution to the lossless wave equation can be 
derived subject to an input pulse v(t), which models the 
uniform normal velocity of the piston. Consider a baffled 
rigid piston with radius a radiating into a homogeneous 

fluid with density p 0 and sound speed c. Solving the wave

equation in cylindrical coordinates (r,z) yields the single­
integral solution:
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Although Eq. (1) can be directly evaluated in the time- 
domain using Gauss quadraure, the computational 
complextiy is significantly reduced by decoupling the 
temporal and spatial dependence in the integrand of Eq. (1). 
Consider a Hanning-weighted pulse v(t) with duration W, 
which is decomposed via
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where the delay r  depends on the spatial coordinates (r,z) 
and the variable of variable of integration p. Inserting Eq. 
(2) into Eq. (1) allows the temporal and spatial dependence 
to be seperated. The expansion functions in Eq. (2) are 
computed via trigonometric expansions. This decompositon 
reduces the number of integrations per observation point 
from the number of time samples to 6 without introducing 
any additional error.

A linear array of 129 circular elements is simulated with 
pistons of radius a = 0.30 mm (half -wavelength) and inter­
element spacing d  = 0.90 mm. Fig. 1 shows the array 
geometry. A computational grid using quarter-wavelength 
(0.15 mm) spatial sampling in both the lateral and axial 
dimensions was employed. The Hanning excitation pulse 
has a central frequency of 2.5 MHz and duration of 1.2 
microseconds. Beam steering and focusing is achieved by 
application of temporal delays to each element [7]. The 
total pressure is then synthesized via superposition. Beam 
steering and focusing are achieved by applying temporal 
delays. To focus on axis at distance F = 50 mm, quadratic 
delays are employed.

Fig 1: Densely sampled linear array. The array used in these 
computations has 129 circular pistons with radius a = 0.30 mm 
(half -wavelength) and inter-element spacing d  = 0.90 mm on a 
computational grid extending 288 wavelengths in lateral direction 
by 167 wavelengths in axial direction.

4. RESULTS
To determine the correct number of quadrature points to 
apply to the decomposition technique given by Eq. (1), an 
error analysis is shown in Table 1. As Table 1 shows, Eq, 
(1) requires 4 Gauss abscissas to achieve a 1 % peak error. 
Field II, which subdivides the aperture into rectangular sub­
elements, requires 484 sub-elements to achieve this error 
level.

Simulation pressure fields are shown in Fig. 2 at three 
successive times, where the pressure has been normalized 
with respect to peak pressure. The total computation time 
for this array system was 11 minutes. In comparison, 
similar computations using Field II softwarea [6] took 
approximately 8 hours to achieve commensurate accuracy. 
The peak field error is computed relative to a 1000 point

m e t h o d s
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Table 1. Single-elem ent error analysis.

10 %  Error 1 %  Error

D ecom positon 3 abscissas 4 abscissas

Field  II 12 sub-elem ents 484 sub-elem ents

Fig 6: Normalized pressure fie ld  at three successive times for the 
phased array defined in Fig. 1. Pressure is normalized with respect 
to the peak value On-axis focusing at 50 mm is employed via 
quadratic time delays.

sampling frequency of 32 Hz (compared to Field’s 100 
reference field; a 4-point quadrature yields a peak error 
below 1% at all points in the computational grid. Since the 
present decomposition technique utilizes a temporal MHz 
sampling), less memory is used.

5. DISCUSSION
Fast and accurate incident pressure field compuations are 
necessary in several applications. Of particular importance 
is the interative design of imaging arrays (both 1 and 2D). 
Array geometry and parameters can be optimized by 
computing transmitted and pulse-echo pressure fields. 
Large-scale modeling of wave propagaton and scattering 
can also benefit from the fast method presented. Time- 
domain scattering methods, such as generalizations of the 
fast multipole method (FMM) [8] require incident field data 
on large, unstructed grids as an input.

6. CONCLUSION
A simulation scheme for pulsed computations with linear 
phased arrays has been proposed. Unlike previous methods 
[6], far field and aperture approximations are not used; 
instead, an exact time-domain solution forms the basis for 
array simulations, which is accelerated by decomposing the 
spatial and temporal dependence of the integrand.
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