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a b s t r a c t

In this work, the multi-resolution wavelet analysis is used to solve Helmholtz integral equation for acoustic 
scattering. The integral equation is solved using moment method with wavelet basis. The unknown field is 
expressed as a two fold summation of shifted and dilated forms of a properly chosen mother wavelet. The 
wavelet expansion covers the scatterer surface for distributing the wavelet localized functions. A simpler 
formulation of a square wavelet operator is proposed and tested in this investigation to obtain the moment 
matrix. The proposed operator saves some traditional stages of wavelet transform and accordingly a part of 
the computations required. The square matrix inversion can be implemented easily on different media. The 
resulting matrix can be made sparse by applying an appropriate threshold. The solution of such sparse matrix 
saves a large portion of the computational load. The accuracy of the proposed solution is compared to the 
exact solution of the problem. Computational savings are illustrated for acoustic scattering on a sphere for 
different wave numbers and wavelet bases order.

s o m m a ir e

Dans ce travail, l ’analyse de ondelette est employee pour résoudre l ’équation intégrale de Helmholtz pour 
la dispersion acoustique. L’équation intégrale est résolue en utilisant la méthode de moment avec la base de 
ondelette. Le champ inconnu est exprimé comme une addition de deux fois des formes décalées et dilatées d’un 
ondelette correctement choisi de mère. L’expansion de ondelette couvre la surface de diffuseur pour distribuer 
les functions localisées par ondelette. Un opérateur carré de ondelette est propose dans une formulation plus 
simple et examiné pour que ce problème obtienne la matrice de moment. L’opérateur proposé sauve quelques 
étapes traditionnelles de ondelette transforment et en conséquence une partie des calculs priés. L’inversion 
carrée de matrice peut être mise en application facilement sur différents médias. L’application d’un seuil 
approprié sur la matrice résultante la rend clairsemée. La solution d’une telle matrice clairsemée sauve une 
grande partie du volume des calculs. L’exactitude de la solution proposée est examinée par l ’intermédiaire de 
la comparaison avec la solution exacte du problème. L’épargne informatique est illustrée pour la dispersion 
acoustique sur une sphère pour des nombres de vague et l’ordre différents de bases de ondelette.

1. i n t r o d u c t i o n

The surface Helmholtz integral equation is a common ap­
proach for the problem of acoustic scattering by obstacles. A 
general procedure for finding a solution of Helmholtz inte­
gral equation that is accurate enough for many practical pur­
poses is the method of moments. Standard moment-method 
approaches are well suited for the solution of scattering prob­
lems as long as the length scale is comparable to the wave­
length [1]. The moment method is essentially a discretization 
scheme whereby a general operator equation is transformed 
into a matrix equation which can be solved numerically. This 
transformation is affected by projections on subspaces, which 
for acoustic scattering bodies are of finite dimensions. The 
resulting matrix is always dense when the conventional ex­
pansion and testing functions are used. Recently, there has 
been much interest in using wavelet basis to sparsify that 
dense moment matrix [2]-[4]. In this work, the technique of 
moment matrix sparsification is used for solving the acoustic
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scattering problem.
If wavelet basis is used, the moment matrix sparsity 

depends mainly on two factors. First, the choice of mother 
wavelet function can help in obtaining the moment matrix 
which is amenable to be sparsified. The other factor is the 
sparsification threshold which may yield maximum sparsity 
while sufficient accuracy of the solution is retained.

In this work, the scattering field is expanded in terms of 
wavelet basis functions. A mother wavelet basis is chosen to 
cope with the acoustic problem details. The dilated and shift­
ed version of the chosen basis are distributed along the sur­
face of the scatterer. This distribution ensures localized ac­
curate fitting with different field modes on all surface points. 
The substitution of such expansion into the integral equation 
results in a moment matrix. This matrix can be thresholded 
appropriately to obtain a sparse matrix. The resulting mo­
ment matrix is rearranged such that a simple formulation of a 
square matrix operator is introduced. The proposed operator 
can be applied to the conventional moment matrix.
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This formulation differs from other traditional 
transformation methods [2], [3] in that only single 
matrix operator is used. The square operator matrix 
helps in implementation and speeds up the 
computations on different media. The squaring is kept 
by using wrap around filter coefficients along the 
matrix rows. The filtering is implemented as circular 
convolutions [5]. The resulting moment matrix is then 
thresholded to be sparsified. Different thresholds are 
tested with different Daubechies wavelet basis orders. 
The mathematical formulation of the problem follows 
the work of [6] for axissymmetric bodies and we 
consider similar test cases especially for the rigid 
sphere which has well known analytical solution [7].

In summary this work addresses the following issues:

a- Introduce a square operator for wavelet- 
based solution of Helmholtz integral 
equation which saves a matrix multiplication 
stage of traditional methods.

b- Test the wavelet-based solution on acoustic 
scattering on a sphere as an axisymmetric 
body based on the formulation in [6] at non­
characteristic wavenumbers (ka<n) while 
the nonuniqueness associated with the 
characteristic wavenumbers is discussed in 
[8].

c- The proposed solution reduces the required 
memory storage and processing time of the 
acoustic scattering problem as compared to 
existing direct methods.

d- The memory storage and processing time 
reduction is a result of the obtained sparse 
moment matrix after applying wavelet 
expansion.

e- The results proves the success of the method 
in saving computational load while the 
accuracy is retained as compared to exact 
solution of the problem which is available 
for simple geometries like a sphere [6], [7],
[9] and [10].

The paper is organized as follows. In Section 2, the 
application of wavelet transform is discussed for 
solving integral equation of acoustic scattering. Section 
3 introduces the multiresolution analysis using wavelet 
and the proposed operator is presented in Section 4. 
The numerical implementation is discussed in Section 
5. The proposed algorithm is, then, summarized in 
Section 6. Numerical results are presented in Section, 7 
using different wavelet basis orders and sparsifying 
thresholds. In Section 8, some concluding remarks are 
given.

2. A  Su m m a r y  O f  T h e  I n t e g r a l  E q u a t io n  

F o r m u l a t io n  In  A c o u st ic s

The boundary integral formulation for acoustic scattering is 
valid for an acoustic medium B exterior to a finite body B with 
surface S on which a unit normal n, pointing into B , is 
defined. The body B is submerged into an infinite linear 
acoustic medium. When a harmonic acoustic wave $  impinges 
upon that body B, the resulting integral equation for smooth 
boundaries has the following form [9];

x(P) $(P) = S { m  g '(p,q)

- G(P,Q) $ (Q)) dSQ + 4 n$(P )

Equation 1 is the standard surface Helmholtz integral equation. 
where $(P) 
surface.

Where

(1)

$(rP) e '^  at a point P and Q is a point on the body

and

$(Q ) =

G '(P ,Q ) =

â$(Q) 

ân

âG(P,Q)

ân

n is the unit vector normal to the surface of the scatterer body 
and into the surrounding space, and n is the distance along the 
external normal vector n.

The free-space Green’s function G for Helmholtz wave 
equation is given by

G(P,Q) = e ~'kR/R  , where R  is the distance between the field 

point P and a source point Q and k  is the wave number. The 
distance is given by

R  =  rP
‘ Q

The coefficient %{P} has the value 0 for P in B, the value 4n  for 
P in B , and the value 2n  for P on a smooth S ( there is a unique 
tangent to S at such a point P).

At the surface of a hard scatterer , the normal component u.n 

of the fluid particle velocity u is zero; i.e. = 0 while, at
ân

the surface of a soft scatterer, the excess pressure is zero; i.e. $ 
= 0.

Both the body shape and the acoustic variables are independent 
of the angle of the revolution of the body for a fully 
axisymmetric scattering case. For scattering, this implies that 
the direction of the incident wave must coincide with the axis of 
revolution of the body. The singularity regularization is similar 
to that used in [6]. This formulation can be summarized as 
follows.
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Consider an axisymmetric body, the integrals in 
equation (1) can be rewritten using a cylindrical 
coordinate system (p, 9, z) as follows:

For hard scatterer

j> (Q ) (G(P,Q))d9(Q)
_ 0

= x(P) m  - 4^  (p  )

p(Q)dL(Q)

(la)

Or for soft scatterer

2n

J(G(p,Q))d9(Q) p(Q)dL(Q )

= x(P) m  + 4^  (p  ) (lb)

These integrals can be rewritten in the form 

|  y(Q) K1(P,Q) p(Q)dL(Q)

-  X(P) 4>(P) - 4 n ^  (P ) (2)

Or

L ^ Q T  K2(P,Q) P(Q)dL(Q) 

-  X(PH(P) + 4 n ^  (P )

(3)

where the axisymmetric assumption implies that the 

field </)(P) and its derivative are independent of 9(P) 
and the differential area element is defined as

dS(Q) = p(Q) d9(Q) dL(Q)

where dL (Q )  is the differential length of the generator 
L of the body at a surface point Q, where Q now is 
interpreted as an arbitrary point on L only.

The evaluation of the integrands in Equations (2) and 
(3) requires the evaluation of the following:

K1(p,Q) - h

( e -ikR(P,Q)

R(P,Q)
d9(Q)

K2(P,Q) -
2f( e -ikR(P,Q)

R(P Q)
d9(Q)

(4)

(5)

3. W a v e l e t  M u l t ir e s o l u t io n  A n a l y s is

The concepts of wavelet expansion and multiresolution analysis 
will be summarized in this section. A set of subspaces {Sj} 
where j s  Z is said to be a multiresolution approximation of 
L2(R) if the following relations are applied

S j C S j+1 j z

U  Sj -  L2 j z
h z

n  s j -  <°>
hZ

f(2x) e S j_1 o  f(x) e Sj

f (x ) e S j o  f(x _ 2 _j n) e Sj 

Vj, nsZ

where Z is the set of integers.

A wavelet family is generated from what is called mother 
wavelet. All wavelets of = a family share the same properties 
and their collection constitutes a complete basis. A wavelet y/jk 
is defined as follows:

/ j k( x )  -  2 ' 2 / (2 J x  _  k ) (6)

where j  and k are indices indicating scale and location of a 
particular wavelet. Accordingly, the wavelet family is a 
collection of wavelet functions /jk(x) that are translated 
along the real axis x, then dilated by 2  times and the new 
dilated wavelet is translated along the real line again. The 
wavelet function must have local (or almost local) support in 
both spatial and frequency domains.

The decomposition of a discrete signal in orthonormal bases 
functions is called a multiresolution analysis. An approximation 
of a function f(x) e  L2( R) at a resolution of 2- , can be defined 
as the projection on different wavelet functions

f ( x ) - X X  a jk ( j k (x) j , k = °..M (7)

where ajk is the amplitude of each wavelet at different 
resolutions (scales) and locations.

The integrands in Equations (4) and (5) are singular 
and the singularities can be removed using the scheme 
developed by Seybert et. al. [6].

A formal approximation of the unknown function at a given 
resolution, with a finite number of successive length scales, 
requires both scaling and translation operators across the 
expansion dimension. From a practical point of view, the
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approximate solution o f an integral equation can be 
expressed as a summation o f an approximate function 
C(x) and a series o f orthogonal wavelets for the finer 
details.

The approximation function C(x) can represent the d-c 
value along the solution domain [ i] .  More general 
form o f equation (7) can be written as follows

m2 n2

f  (x) =  a 0C ( x )  +  II a mn /m n (x)  (8)
m=m1n=n1

where a0 and amn are yet to be determined coefficients 
and

contrast, the Shannon wavelet has non-compact support in 
space, hence it has poor space localization. In this work, the 
space localization is essential to cover the scatterer surface [11].

4. W a v e l e t  E x p a n s i o n  O f  I n t e g r a l  

E q u a t i o n s

Using the method o f moments [12] in solving an integral 
equation o f the form in equations (2) or (3) by substituting (8) 

into (2) or (3) for an acoustic field function <j>(Q) instead of 

f (x )  , we get

m2

ao A (P) + I I amn Fmn(P,Q) = 9 (P) (9)
m=m1 N(m)

C( v ) = J 1 x e problem boundary 
( ) = ' 0 otherwise

The summation in Equation (8) is over values o f m 
ranging from m l,  which corresponds to the larger 
characteristic length scale, to m2, which corresponds 
to the desired resolution in scaling. Recalling that with 
reference to / 00(x), the effective width o f / mn(x) is 
changed gradually by a factor o f 2-m and its center-a 
point on the wavelet grid- is shifted by the distance 
n2-m. For a given value o f m, the number o f wavelet 
functions, N(m)=n2-n1, is set so that their centers fall 
within the problem domain and outside. Hence as m 
increases, more wavelets and more grid points are 
involved at each resolution level.

The discrimination between two classes o f wavelet 
families should be considered in the selection of 
wavelet family for multiresolution analysis. Further, 
these functions should be orthonormal. The following 
two examples exhibit the localization properties o f 
wavelets.

d . \ s in (^x / 2) , 3 k x .
Shannon family / ( x ) = ------------- -COS(------)

jtx / 2 2

where N(m)= n2(m) - n(m), the number of points required to 
cover a domain L at a resolution 2-m,

A (P ) = |  C(Q) K(P,Q) d(Q ) Q e L

and

Fmn (P ) = |  / mn(Q) K(P,Q) dQ
L

where Q e L

In multiresolution analysis in space and frequency each spatial 
domain is analyzed through different scales or resolutions. 
Accordingly, the wavelets can be renumbered according to their 
spatial centers and scales.

Rearranging the elements and coefficients o f the Equation (9) 
and casting them into a matrix form, we get

K W Y = G (10)

where

C q ) C(q2 ) .. .. C(qN)

w t = /n(q1) / 12(q2) .. ... / 1N (qN )

/ N1 (q1 ) / N2(q1) .. ... /NN(q1)

Haar family / (  x  ) =

1 0 < x  < 0.5 

-1  0.5 < x  < 1 

0 x  > 1

The above two wavelet family examples are opposite 
o f each other in terms o f their localization properties. 
The Haar wavelet has good space localization but poor 
space frequency localization. Its spectrum is non zero 
when the frequency tends to » .  It does not have 
compact support in the space frequency domain. In

where, matrix W is cast into squared dimension o f NaN  and 
it can be called the wavelet operator or filter.

And,

K(A,qJ k (a æ ) ... . . .  K & a N )

K =
Kp2,q1) K(p>2,q2) .. .... Kp2,qN)

................ 
q,1

.. 
K(

I

... 
)2 

... 
q,

. 
K(

.....K(pN,qN )
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Gt = [ G(p1) G(p2) 

and

G(pN)]

Y  -  [An1 . An1+1..........An2 ]

The unknown coefficients vector Y contains 
subvectors for each scale level. Each subvector 
represents a distinct length scale. The elements of each 
subvector are ordered according to their locations. 
These unknowns are the wavelet amplitudes along the 
domain L.

A ni [ani+1. a ni+2 ■ ani+N(ni) ]

The effective support (nonzero elements) in the 
operator matrix W of a wavelet y/mn as the interval 
outside of which the wavelet is practically zero.

5. N u m e r ic a l  F o r m u l a t io n

Equation (10) can be written at different node points ip 
and assuming the index of surface elements iq, the 
following discretized form of equation (10), for N  
nodes on the surface, can be written as follows

A Y  = G 

T
and 9 =  W Y  (11)

where A is an NxN  matrix. 9  and G are N  vectors. For

d<j>
the hard scatterer ---- =  U , and hence, we can write

dn

K(ip  , iq ) =  £  K1(P,Q) p ( iq )dL(iq )

V  ip * iq

K(ip  , ip ) =  £  K1(P,Q) p(iq )dL(iq ) -  2 ^

V  i p =  iq

and

G(ip ) = - W  (ip ) V i p =  1-N

where 9  is an N  -dimension vector representing the 
field strength on the scatterer surface and 9 i is the 
incident field.

The numerical example investigated here is the 
scattering problem of a plane incident wave impinging 
on a rigid sphere. The incoming unit plane wave travels

toward the scatterer along the positive direction of z-axis in the 

cylindrical coordinates described as e -k . The surface field 9  

is computed using the proposed method. The results will be 
verified via comparison with the analytical solution. The 
benefits of the method will be validated by comparing the 
accuracy and sparsity ratio for different wavelet bases support 
lengths and sparsity thresholds.

On the surface of a hard sphere, the analytical solution of 
equation (1) for plane incident wave can be expressed as [7]

4  =
- i - \ n , o  ^ P n( c o s 3 )  

£ ( - / )n( 2 n  + 1 ) -  nV '

( k a ) n=U h i 2 i ( k a )
(13)

where 4  is the total field as defined in (3) and 3  is the co­
latitude angle and the incidence angle is taken to be zero in 
this application. P n is the Legendre polynomial of order n and 

h n is the spherical hankel function and a is the radius of the 
sphere.

Equation (11) is solved using the proposed system of equation 
(3)-(8) and the proposed discretization scheme considering 

different N  divisions. Using Daubechies wavelet, the resulting 

operator matrix W  is square and the maximum number of 

scaling levels M  is defined by N = 2 M.

The results obtained are then compared to the analytical 
solution. The normalized error is defined as the ratio between 

the field (4) error to the analytical solution as follows

Normalized Error ratio -  -
4 wvl 4 a

4 a
(14)

where 4wvl is the resulted solution form Equation (11) and 

4ana is the analytical solution given in (13) and . is the L2

norm.

The second comparison parameter is the percentage sparsity S 
and it is defined as

S =  No/N2 x  100% (15)

( \2h ere No is the number of zeros in the matrix A  after 
thresholding and N  is the matrix dimension.

The numerical results are obtained using the direct 
discretization of the integration in equation (12). These results 
are compared with that obtained by the proposed method. The 
comparison discusses the effect of wavelet expansion on saving 
the computational burden through matrix sparsity and accuracy

23 - Vol. 34 No.1 (2006) Canadian Acoustics / Acoustique canadienne



of the solution. Different thresholds are tested for 
increasing matrix sparsity and the accuracy computed 
for each trial.

6. S o l u t io n  A l g o r it h m

For electromagnetic problems, it was reported that 
almost identical results are obtained using Daubechies 
and wavelet-like bases [13] and [14]. Daubechies 
wavelets are strictly localized in space and 
approximately localized in spatial frequency as 
discussed in Section 3 since Haar wavelet is a special 
case of Daubechies family of order 1. Increasing 
vanishing moment order produces smoother broader 
basis function with sharper spectral cut-off frequencies 
[14]. Also, these wavelets can approximate finer 
resolutions near boundaries and corners of scattering 
surfaces. In general, classical wavelets seem to be good 
in computing low frequency scattering and antenna 
problems [15]. For these reasons and due to similar 
mathematical formulation of acoustic scattering, 
Daubechies wavelets are more appropriate for that 
problem. Many recent works employed Daubechies 
wavelets in solving scattering problems [2], [3], [4] and 
[16].

The solution method can be summarized in the 
following steps which can be used to solve an integral 
equation of the second kind.

1. Construct a grid of points at the surface of the 
considered body.

2. Build system of equations for the integral 
equation kernel at all points of the grid given by 
step 1.

3. Build the wavelet multiresolution operator as 
given in equation (11) considering the 
Daubechies wavelet filters [17].

4. Apply the operator to the kernel matrix (Direct 
multiplication of square matrices).

5. Scan the resulting matrix elements and get the 
maximum element value

MAXA=MAX(A )

6. Scan the matrix and compare each element with 
a threshold as a ratio of the obtained maximum 
(MAXA) in step 5 and nullify the element 
which is less than that threshold as follows

For t/ i,j

I f  A(i,j) < (THR * MAXA) then A(i,j)=0

where THR is taken with different values as indicated on 
figures. An average value is around 10-3 [5].

7. Solve the resulting sparse matrix considering the given 
field variation along the solution domain.

7. R e s u l t s

The problem of acoustic scattering on a hard sphere is solved 
both numerically using wavelets and analytically. Figures 1 and 
3 show comparisons of both solutions graphically for two 
different Daubechies (2 & 3) wavelet orders for ka=2, N=32 
and 10-3 threshold. Each figure contains the exact solution of 
the corresponding problem for comparison.

Figures 2 and 4 show trend graphs between the sparsity and for 
the cases of Figures 1 and 2. The trend behavior indicates 
oscillatory behavior of the error at ka=2 when Db2 is used. This 
behavior can be interpreted based on very small variation in 
error within the order of 0.015%.

Figure 4 shows monotonic decrease in error with sparsity as 
expected. These trends also show that the error variation within 
the used sparsity threshold range is small (in the order of 0.1% 
at most).

Table 1 A comparison between different solutions using several 

wavelet bases

Ka basis %S THR Error N

1 Db1 33.59 10-2 0.031 16

2 Db2 44.53 10-3 0.044 32

2 Db3 50.97 10-3 0.043 32

2 Db4 61.04 10-3 0.044 32

2.5 Db2 46.29 10-3 0.067 32

2.5 Db3 32.27 10-3 0.067 32

Test results on different wavelet orders, thresholds and 
noncharacteristic wavenumbers (ka<n) are summarized in 
Table1. These results show that the error dose not exceed about 
6% and sparsity reaches about 60%. Lower thresholds can give 
higher sparsity with little deterioration in accuracy as expected 
from results in Figures 2 and 4.
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Surface field for scattering on hard sphere, ka=2 wavelet family=db2 
2 ---------------------------1---------------------------1---------------------------1-------------------------- 1---------------------------1---------------------------1-----------------

1.8

0 6 ------------- 1------------- 1------------- 1-------------1------------- 1------------- 1-------------
0 5 10 15 20 25 30 35 

Surface point

Figure 1. Scattering of plane wave of ka=2 and db2 wavelet basis

Figure 2. E rro r trending for db2 basis and ka=2
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Surface field for scattering on hard sphere, ka=2 wavelet fa m i I y= d b3 
2 ---------------------------1---------------------------1---------------------------1-------------------------- 1---------------------------1---------------------------1-----------------

1.8

0 6 ----------------- 1----------------- 1----------------- 1----------------- 1----------------- 1----------------- 1-------------
0 5 10 15 20 25 30 35 

Surface point

Figure 3. Scattering of plane wave of ka=2 and db3 wavelet basis

Figure 4. E rro r trending for db3 basis and ka=2
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8. C o n c lu s io n s

A multiresolution wavelet analysis has been applied to 
solve Helmholtz integral equation for acoustic 
scattering. The integral equation is solved using 
moment method with wavelet basis. The wavelet 
expansion covers the scatterer surface for distributing 
the wavelet localized functions. Applying an 
appropriate threshold on the resulting matrix makes it 
sparse. The sparsity of the resulted matrix can be 
efficiently utilized to get faster solution of the 
problem for larger dimensions.

Different comparisons are conducted for different 
wavelet bases, sparsification thresholds versus solution 
accuracy. The accuracy of the proposed solution is 
assessed with respect to exact solution of the problem. 
The results show that Daubechies wavelet family is 
successful for the acoustic scattering applications like 
electromagnetic problems as presented in many 
references. The results also prove that the proposed 
square operator can be successfully applied to solve the 
scattering problem.
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