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1. i n t r o d u c t i o n

False alarm returns from naturally occurring 
objects in the environment often plague active sonar 
systems. These types of echoes are known collectively as 
clutter.

Typically a human operator is responsible for discriminating 
between echoes from true targets and echoes from clutter 
objects using visual displays, such as time-frequency 
sonograms. There have also been attempts to create 
automatic classifiers based upon purely statistical signal 
features. Both of these conventional techniques for active 
sonar classification ignore a potentially valuable tool: the 
human auditory system.

There is mounting experimental evidence to suggest that 
human listeners can aurally discriminate between target and 
clutter echoes1. This paper investigates the possibility of 
using cues known to be perceptually relevant in the human 
auditory system as signal features in an automatic classifier.

Drawing an analogy between active sonar echoes and 
percussive musical timbre, this paper examines signal 
features that have been identified as underlying the 
perception of timbre. These perceptual signal features are 
used to automatically classify impulsive-source active sonar 
echoes recorded on a towed-array.

The purpose of this paper is to demonstrate that active sonar 
echoes can be successfully classified using perceptual signal 
features, and not to suggest that this technique is superior to 
human-operator classification using visual displays or to 
automatic classification with statistical signal features. 
Indeed, the optimum classification technique probably 
involves a combination of all three approaches.

2. e x p e r i m e n t a l  d a t a

The experimental data consists of 98 target echoes 
from two different objects and 100 clutter echoes from 28 
different objects. The two target objects are an oil rig and 
the tanker ship that attends it. The 28 clutter objects are 
naturally occurring seafloor structures.

The data were collected during a sea trial on the Malta 
Plateau using signals underwater sound (SUS) charges and a

towed-array. A total of nine SUS charges were deployed 
during the experiment. Each SUS charge contained 0.82 kg 
of TNT and was set to detonate at a depth of 87.0 m. The 
towed-array consisted of 96 omni-directional elements 
sampled at a rate of 4096 Hz, and it was towed at a speed of 
10 knots and a depth of 40 m. Average water depth in the 
area was about 100 m.

The towed-array data were beamformed to obtain a total of 
81 horizontal beams. Each beam was spectrally whitened 
using a Butterworth filter and then normalized to eliminate 
reverberation using a two-pass mean technique2. Then an 
energy threshold was applied and samples that exceeded the 
threshold were taken to be detections. To eliminate signal- 
to-noise ratio (SNR) as a possible target-clutter 
discrimination cue, care was taken to balance the target and 
clutter SNR distributions so that the distribution of SNR 
values within the target class was very nearly identical to 
the distribution of SNR values within the clutter class.

3. p e r c e p t u a l  s i g n a l  f e a t u r e s

Musical timbre is defined as “that attribute of 
auditory sensation in terms of which a subject can judge that 
two sounds similarly presented and having the same 
loudness and pitch are dissimilar”3. There have been many 
musical acoustics studies that investigate the signal features 
that underlie the perception of timbre4. This paper will apply 
several perceptual signal features identified in those studies 
to the problem of active sonar classification.

Perceptual signal features considered in this paper include: 
duration, sub-band attack and decay time, sub-band 
synchronicity, spectral character of the pre-attack noise, and 
the peak value, centroid, and roughness of the perceived 
loudness spectrum. Because these features are inherently 
perceptual, they must be measured using a model of the 
human auditory system. The auditory model employed in 
this paper consists of two main components: an auditory 
filter bank5, which breaks the sonar echoes down into sub
bands, and a loudness model6, which converts the output of 
the filter bank into a perceived loudness spectrum.

Time-frequency features -  like sub-band attack and decay 
time and sub-band synchronicity -  are measured at the 
output of the filter bank (i.e., prior to applying the loudness 
model). Purely spectral features -  like the peak value,
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centroid, and roughness of the loudness spectrum -  are 
measured at the output of the loudness model. To eliminate 
total loudness (i.e., the integral across the perceived 
loudness spectrum) as a target-clutter discrimination cue, 
each echo is scaled to have the same total loudness.

Many of the features considered in this paper are multi
valued in that they consist of multiple values for each echo. 
For example, consider the feature sub-band attack time: for 
a single echo there are sub-band attack time values for each 
channel of the filter bank, but the analysis which follows 
requires single-valued features. Conversion of a single 
multi-valued feature into multiple single-valued features is 
achieved using summary statistics. Sub-band attack time is 
thus converted into three single-valued features: minimum, 
mean, and maximum sub-band attack time. In this way a 
total of 58 single-valued features are constructed.

Each of the 58 perceptual features is normalized so that, 
over all 210 returns, the mean feature value is 0 and the 
standard deviation is 1. This normalization process ensures 
that each feature is weighted equally in the analysis that 
follows.

4. PRINCIPAL COMPONENT 
ANALYSIS

Principal component analysis (PCA) is a statistical 
technique for projecting a multi-dimensional feature-space 
defined by M  possibly correlated signal features down onto 
a multi-dimensional feature-space defined by N  uncorrelated 
signal features, where N  < M. PCA is applied by first 
obtaining the eigenvectors of the correlation matrix defined 
by the M  original features. The eigenvectors are sorted 
according to the magnitudes of their corresponding 
eigenvalues and the first N  eigenvectors are then used to 
define a transformation matrix, which projects points (i.e., 
echoes) in the old M-dimensional feature-space down onto 
the new N-dimensional feature-space.

The following section presents N=2 PCA results for several 
different M  values. The M  features included in the PCA are 
those which, when considered in isolation, have the least 
overlap between the target and clutter classes.

5. AUTOMATIC CLASSIFICATION

The full data set (consisting of 210 echoes 
described by N=2 PCA features) is split into two sub-sets, 
which are used to train and test a Gaussian-based automatic 
classifier. During the training phase, separate target and 
clutter Gaussian probability density functions (PDF) are 
defined using sample mean and covariance matrices 
estimated from the echoes in the training sub-set. During the 
testing phase, each echo in the testing sub-set is classified as 
either target or clutter based upon its relative position on 
these two PDFs. The error rate (i.e., the fraction of 
misclassified echoes in the testing sub-set) is then calculated

and used as a metric to quantify the success of the 
classification process.

Automatic classification using this technique is carried out 
twice for the M=5 / N=2 PCA results: the first time training 
on echoes from the tanker ship and 14 of the 28 clutter 
objects then testing on echoes from the oil rig and the other 
14 clutter objects (scheme A), and the second time reversing 
the training-testing echoes (scheme B). Results for training- 
testing scheme A are presented in the Figure 1. Automatic 
classifier results for other M  values are presented in Table 1.

PCA eigenvector tt 1

Fig. 1. M=5/N=2 automatic classifier results for scheme A; the 
ellipse represents the decision surface

Table 1. N=2 automatic classifier error rates
M 2 5 58

Scheme A 12.28% 8.77% 7.89%
Scheme B 9.52% 13.10% 14.29%

6. DISCUSSION

Results presented in this paper demonstrate that 
perceptual features can be used to successfully classify 
impulsive-source active sonar echoes: using perceptual 
features with a Gaussian classifier, error rates less than 10% 
can be achieved. However, care must be taken when 
selecting features for inclusion in the analysis since in many 
situations fewer features (i.e., smaller M) yield better 
results. Moreover, A-B comparison suggests that the “best” 
choice of features for any classification task depends on the 
data used for training. Future plans include applying the 
perceptual feature automatic classifier to echoes from real 
submarines and to coherent-source active sonar data.
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