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ABSTRACT

Accurate localization of the individual elements of an underwater acoustic receiver array is an important 
prerequisite to  advanced array processing applications. Array element localization (AEL) methods are 
typically based on inverting acoustic arrival-time measurements from controlled sources at (approxi­
mately) known positions to  the receivers to  be localized. This paper presents and illustrates a general 
approach to AEL inversion and to AEL survey design based on quantifying the posterior receiver- 
location uncertainty, taking into account uncertainties in the data, source locations, sound speed, and 
water depth. The inversion is based on a fast ray-tracing algorithm th a t employs Newton’s method 
and the method of images to  determine eigenrays for direct and reflected arrivals. The efficiency of 
this approach allows computationally intensive analysis such as Monte-Carlo appraisal and nonlinear 
optimization for designing optimal source configurations. These algorithms provide a rigorous approach 
that can be applied to examine all aspects of AEL accuracy and survey design, illustrated here by several 
examples. It is shown th a t synchronized AEL surveys (in which source transmission times are known) 
provide only a minor improvement over non-synchronized surveys (often much simpler logistically), and 
the difference can be made up by using more sources in an optimal configuration or by including addi­
tional arrivals. Including multiple-reflected arrivals improves receiver depth estimates (provided water 
depth is well known), but provides little improvement in horizontal localization.

SOMMAIRE

La localisation precise d ’elements individuels d ’un etalage de récepteurs acoustiques sous-marin est un 
facteur important qui peut fortement influencer la validité de la manipulation de donnees. Les methodes 
de Localisation des Elements d ’Etalage (AEL) sont typiquement basees sur l’inversion de temps d ’arivee 
acoustiques mesures, parvenant de sources contr olees à des positions connues (approximativement), 
relatives aux positions des récepteurs localiser. Cet article présente et illustre une approche gnerale à 
l’inversion de AEL et à la planifications d ’etudes de AEL, basee sur la quantification de l ’incertitude 
postérieure de la position des récepteurs, compte-tenue de l ’incertitude des donnees, de la position 
des sources, de la vitesse sonore, et de la profondeur d ’eau. L’inversion est basee sur un algorithme 
rapide de traage de rayon qui utilise la methode Newton et la methode d ’images pour determiner les 
rayons-eigen pour les arives directes et reflerées. L ’efficacite de cette approche permet l ’utilisation de 
methodes calcul informatique intense, comme év a lu a tio n  Monte-Carlo et l ’optimisation non-lineaire, 
pour la planification de configuration de sources optimale. Ces algorithmes fournissent une approche 
qui peut etre applique pour examiner tout les aspects de la precision et de la planification d ’etudes de 
AEL, illustre ici par plusieurs exemples. Il est demontr ici que les etudes de AEL harmonises (pour 
qui les temps de transmission de source sont connues) fournissent seulement une amelioration mineure 
comparativement aux etudes non-harmonizes (qui ont souvent une logistique plus simple), et que la 
difference peut etre rcupre en utilisant plus de sources dans une configuration optimale ou en incluant 
des arivees additionnelles. En incluant les arivees a réflextion multiple, l’estimation de profondeur des 
récepteurs est ameliore (a condition que la profondeur d ’eau est bien connue), mais n ’ameliore que peu 
la localisation horizontale.

1. INTRODUCTION

Array processing methods in underwater acoustics 
require accurate knowledge of the locations of individual 
elements in a receiver array [1,2]. However, sufficiently 
accurate receiver locations are often not know after array 
deployment at sea, and array element localization (AEL) 
surveys are typically required. AEL is based on invert­

ing acoustic arrival-time measurements from a series of 
controlled sources to  the receivers to  be localized. AEL 
methods usually use direct acoustic-path arrivals, but 
can also include surface- and/or bottom-reflected arrivals 
to  provide more information, provided these arrivals can 
be identified. Synchronized AEL surveys (in which the 
source transmission instants are known and the data rep-
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resent absolute travel times) are often more complicated 
logistically th a n  non-synchronized surveys (which pro­
vide relative travel tim es), bu t produce more informative 
data. A th ird  possibility is th a t  of synchronized surveys 
which make use of cross-correlation or waveform envelope 
techniques to  pick arrival tim es, and hence provide d a ta  
consisting of absolute travel times bu t w ith an unknown 
offset th a t  is common for all data.

Ideally, AEL inversion should address all (significant) 
sources of error in the  acoustic survey, and incorporate 
physical prior inform ation about the  solution in addi­
tion  to  th e  m easured data. Although the  source po­
sitions are often trea ted  as known param eters in AEL 
inversion, in reality, errors in these positions are often 
significant and represent the  limiting factor [3]. This 
lim itation can be addressed using the  m ethod of regu­
larization to  formulate an inversion th a t  properly trea ts  
bo th  source and receiver positions as unknown param ­
eters with prior estim ates and associated uncertainties 
[3-10]. An unknown bias to  the  m easured sound-speed 
profile (commonly due to  inexact calibration [11]) can 
also be included in th e  inversion. For arrays th a t  are 
expected to  be essentially straight, a regularization can 
be formulated for the  sm oothest array shape (i.e., the  
shape w ith minimum curvature or changes in direction) 
subject to  fitting the  acoustic d a ta  to  a statistically  ap ­
propriate level. Regularized inversion has been applied to 
diverse AEL problems involving fixed horizontal arrays 
[3-5], m oored vertical arrays [5,6], towed arrays [7,8], 
and freely-drifting sonobuoy fields [9,10].

The uncertainties of the  recovered receiver positions 
can be estim ated efficiently from a linearized approxim a­
tion  of the  posterior covariance m atrix , evaluated at the 
regularized solution. Alternatively, uncertain ty  estim ates 
can be derived from a M onte Carlo appraisal procedure 
which calculates sensor-location error statistics from an 
ensemble of noisy synthetic inversion results [3]. Monte 
Carlo appraisal is com putationally intensive, bu t repre­
sents a fully nonlinear solution, and also can be formu­
lated  to  provide relative receiver position uncertainties 
by correcting each inversion result for optim al translation  
and ro tation  (linearized uncertain ty  estim ates represent 
absolute uncertainties). Regularized AEL inversion and 
M onte Carlo appraisal, including the  associated assum p­
tions regarding d a ta  error statistics (described in Sec. 3), 
have been verified by comparing AEL results to  a high- 
precision optical survey for a 2-D array, including both  
horizontal and vertical sub-arrays, deployed from shore- 
fast Arctic sea ice [5].

The geometric configuration of acoustic sources is an 
im portan t factor controlling th e  accuracy of AEL inver­
sion: a good configuration can provide much more accu­
ra te  AEL results th a n  a poor configuration [12]. The op­
tim al source configuration can be determ ined for a partic ­
ular array deployment by minimizing the  m ean receiver 
localization error over source positions. This represents 
a challenging numerical optim ization problem, and, for 
efficiency, the  localization error is based on the  linearized 
estim ate. C om puting optim al source configurations also 
allows various aspects of AEL inversion, such as the  effect

of the  num ber of sources, to  be examined in a meaningful 
m anner.

AEL inversion is based on inverting the  acoustic ray- 
tracing equations. Hence, efficient AEL algorithms re­
quire an efficient ray-tracer; th is is particularly  im por­
ta n t  for the  com putationally-intensive M onte Carlo and 
optim ization applications. The ray-tracer developed here 
is designed to  determ ine eigenrays (rays th a t  connect 
source and receiver) using N ew ton’s m ethod to  iteratively 
improve an initial estim ate. Since AEL surveys are based 
on simple, specific acoustic paths, th is approach is much 
more efficient th a n  th a n  standard  m ethods of shooting a 
large num ber of rays to  bracket (trap) and subsequently 
refine eigenrays. N ew ton’s m ethod is applied to  surface- 
an d /o r  bottom -reflected rays using the  m ethod of images.

The rem ainder of this paper is organized as follows. 
The ray-tracing algorithm is described in Section 2. Sec­
tion  3 develops th e  regularized AEL inversion and lin­
earized uncertain ty  estim ation. Section 4 describes the 
M onte Carlo appraisal for nonlinear uncertain ty  estim a­
tion. Section 5 considers design of optim al AEL source 
configurations. A synthetic example illustrating AEL in­
version/uncertain ty  estim ation and considering several 
factors affecting AEL accuracy and survey design runs 
th rough  these sections. Finally, Section 6 summarizes 
and discusses this work. This paper is the  result of a re­
cent project to  unify and extend previous disparate work 
in AEL [3-10,12]. Hence, while portions of the  theory 
in Sections 3-5 have been presented elsewhere, th is pa ­
per is the  first to  provide a complete, system atic, and 
self-consistent approach to  the  various AEL applications 
(and also corrects several earlier errors). Further, th e  ex­
tension of the  efficient ray-tracer and AEL inversion to  
reflected and turn ing  ray paths and the  applications to  
study  AEL accuracy and survey design are novel.

2. RAY TRACING

Consider an ocean acoustic source and receiver at 
( x j , y j , Zj ) and (xi; yi; zi ), respectively, with zj  < zi 
(source above receiver is assumed here; for the  opposite, 
a  negative sign is required in the  integrals below unless 
otherwise noted). The horizontal range between source 
and receiver is given by

V  [(x i x j ) +  (yi yj ) ]
21 1/2 (1)

Expressions for th e  range v  and arrival-time t  between 
source and receiver along a non-turning direct ray (i.e., a 
ray th a t  does not change vertical direction as th e  result of 
reflection or refraction) are obtained by applying Snell’s 
Law to  an infinite stack of infinitesimal layers [13]

pc(z)  dz

t  — t0 +

lz3 [1 -  p 2c2(z)]1/2 

f'z' dz

'Zj c(z) [1 p 2c2(z)]1/2

(2)

(3)

where t 0 represents the  source transm ission time. In 
Eqs. (2) and (3), the  ray param eter p  — cosO(z)/c(z)

z
V
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(where 0(z) is the grazing angle) is invariant along a ray 
path, and defines the take-off angle at the source. The 
ray parameter for an eigenray connecting source and re­
ceiver is determined by searching for the value of p  which 
produces the correct range (to a specified tolerance) us­
ing Eq. (2). The efficiency of this search is the key to an 
efficient ray-tracing algorithm.

For non-turning direct-path eigenrays, a highly effi­
cient procedure of determining p is based on Newton’s 
method. An initial estimate p0 is based on straight-line 
propagation with a constant sound speed cH represent­
ing the harmonic mean of the water-column sound-speed 
profile between source and receiver

CH =  (Zi -  Zj)
Zi dz_

. c(z)
(4)

(this equations also holds for zi < Zj ). An improved esti­
mate pi is obtained by expanding r(p) in a Taylor’s series 
about po and neglecting nonlinear terms leading to

pi =  po +
dr(po)

dp

i
(r(p) -  r(po)) . (5)

In Eq. (5), dr /dp  is determined by differentiating (2) 
according to Leibnitz’s rule to yield

dr

dp

c(z ) dz

[1 — p2c2(z)]3/2
(6)

If r (p i ) computed from Eq. (2) is within the tolerance of 
the desired range according to Eq. (1), the procedure is 
complete. If not, the starting value is updated, p0 ^ p i ,  
and the procedure repeated iteratively until a satisfac­
tory value is obtained. Since Newton’s method converges 
quadratically near the solution, this is a highly efficient 
method of determining eigenrays to high precision, often 
requiring only one or two iterations. Once the ray pa­
rameter p is determined, the travel-time along the ray 
path is computed using Eq. (3).

In addition to computing travel times, AEL inver­
sion (described in Section 3) requires partial derivatives 
of travel-time with respect to source and receiver coor­
dinates, source instants, and sound-speed bias. Consider 
first the partial derivative with respect to horizontal co­
ordinate x i . Employing the chain rule

dt dt dp dr dt  

dxi dp d r dxj, dp

dr

dp

i
dr

d x - .  <7)

The three partials on the right side of Eq. (7) can be cal­
culated from Eqs. (3), (2) and (1), respectively, yielding

dt ( ) /  t —  =  p (x- — xj )/r  
dx- (8)

Similarly, partial derivatives with respect to the other 
horizontal coordinates are

dt

dx  o
=  p (xj — x - ) /r  , (9)

d y  = p (yi — y ) / r ,

dt

dVj
=  p (yj — yi)/ r . (11)

( 10 )

The partial derivative of t with respect to vertical coor­
dinate zi can be determined from Eq. (3)

dt_
dz-

pc(z) dz dp

[1 — p2c2(z)]3/2 \ d z i 

1

c(z-) [1 — p2c2(z-)]1/2' (12)

An expression for d p /d z i can be obtained by noting that

dr 

dz-

f'Zi c(z) dz (  dp 

Lj  [1 — p2c2(z)]3/2 Vdz-

pc(z-)

[1 — p2 c2 (z-)]1/2 
(13)

Solving for d p /dz i and substituting into Eq. (12) yields

1dt

dz- c(z-)

Similarly,

dt

dz.i z(zj )

N 2 2/ 1/2[1 — p c (z-)J

[1 — p2c2(zj )]1

(14)

(15)

The derivative of t with respect to the source instant t o 
in Eq. (3) is simply given by

dt

dtr
=  1. (16)

However, for the purposes of AEL inversion, t 0 in Eq. (3) 
is replaced by (ct0)/ c, where c represents a representative 
sound speed. This allows the unknown source instant 
to be represented as ct0, which has the same physical 
units (distance) and similar uncertainty as the positional 
parameters (scaling parameters in this manner generally 
improves the numerical stability of inversion algorithms). 
In this case the partial derivative becomes

dt 1

d (ct0)
(17)

Measured sound-speed profiles are generally accurate 
in a relative sense, but frequently suffer from bias errors 
of up to 2 m /s due to inaccurate calibration [11]. To 
account for an unknown bias in the sound-speed profile, 
let c(z) = c t (z) +  cb, where ct (z) is the true sound speed 
and cb is the bias. Differentiating Eq. (3) with respect to 
cb (and noting dp/dc  =  —p/c) leads to

dt_

dcb

dz

I Zj c2 (z) [1 — p2c2(z)]1/2
(18)

Sea surface and bottom reflections can be included 
in the above formulation for direct rays using the method 
of images, i.e., by representing the reflected ray path by

Z

1
Z

Z
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Sound Speed (m/s) Range (m)

F ig u re  1: Exam ple of tracing a surface-reflected ray 
using the  m ethod of images. Panel (a) shows the  “image” 
sound-speed profile, w ith structure  reflected about the 
sea surface. Panel (b) shows the  equivalence of a reflected 
p a th  and a direct p a th  traced  through the  image sound- 
speed profile.

a direct p a th  from an image source located above the  
surface or below the  bottom , respectively. To apply the 
m ethod of images, the  sound-speed profile is reflected 
about th e  interface in the  same m anner as th e  source, 
and a direct ray is traced  through th e  resulting “image” 
sound-speed profile. An example of this procedure is il­
lustra ted  in Fig. 1 for a surface-reflected ray. Ray paths 
involving multiple reflections can be accom m odated by 
applying the  m ethod of images recursively.

To implement th e  equations derived above, it is as­
sumed th a t  a discrete sound-speed profile can be rep­
resented by a series of layers with a (non-zero) linear 
gradient in each layer. In the  following, let {(zk , ck) , k  =  
1 , N z} represent the  piece-wise linear sound-speed pro­
file (including any required profile reflections), and let 
{gk} be the  corresponding sound speed gradients. The 
integrals in Eqs. (2), (3), (4), (6), and (18) can be eval­
ua ted  analytically, yielding the  following results, where 
w k =  (1 -  p 2c2) 1/2,

i-1

r = J 2
k=j

i 1

Wk -  Wk+1

1
t o + ^2—

k“  gkk=j

log

i 1

ch  =  (zi -  zj ) /  Y, gr  
' gkk=j

log

P9k

Ck + 1 (1 +  Wk )

3 Ck (1 +  Wk+1 )_

gk (zki zk) +  ck

ck

dr
i-1

i
Wk -  Wk+1 

i2dp  P  gk Wk Wk+ik=j

d t

dcb

i-1 1 

£ 1
k=j gk

Wk+1 Wk 

ck+1 ck

(19)

(20)

, (21) 

(22) 

(23)

If a non-turning eigenray cannot be found for a par­
ticular source/receiver dep th  and range, a search over 
tu rn ing  rays is required. An efficient stra tegy for this 
search uses the  average sound-speed gradient between
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source and receiver as an indicator of the  most likely take­
off direction for a tu rn ing  ray. Given zj < z i (source above 
receiver), consider first the  case of a negative (downward- 
refracting) average gradient. In this case, the  first rays 
considered are those leaving the  source upward to  see 
if they tu rn  back down to  the  receiver. This is accom­
plished efficiently by considering rays th a t  tu rn  a t the  
top  of each layer of the  sound-speed profile above the  
source. If gk <  0, the  p  value for an upward propagating 
ray tu rn ing  a t the  top  of th e  k th  layer is given by

P =  1 /ck . (24)

If tracing rays th a t  tu rn  a t successive layer boundaries 
bracket the  receiver, an eigenray is trap p ed  and can be 
refined using the  bisection m ethod. If no such eigen- 
rays exists, a secondary search can be carried out over 
downward-propagating rays th a t  tu rn  upward below the  
receiver (if such rays exist) using a similar strategy. Al­
ternatively, if the  average sound-speed gradient between 
source and receiver is positive (upward-refracting), the 
initial search is over rays th a t  tu rn  upward a t layer bound­
aries below the  receiver, followed by rays th a t  tu rn  down­
ward above the  source (if they exist). The above s t ra t ­
egy is used for zj > z i (receiver above source) by applying 
reciprocity.

Once the  ray param eter p  is determ ined for a tu rn ­
ing ray, the  integrals along the  ray-path  are evaluated. 
Consider, for example, the  case of an initially downward 
propagating ray entering the  1th layer w ith a positive 
sound-speed gradient g i. The tu rn ing  depth  for th is ray 
is given by

zt  =  zi +  (1 /p  -  ci)/gi.  (25)

If th is dep th  is less th a n  zi+ 1 (bottom  of 1th layer) the 
ray tu rns  in th is layer; if not, it proceeds into layer 1+1. 
If the  ray tu rns  in layer 1, then  the  integration involves 
four steps: (i) in tegrate from the  source depth  zj down 
to  zi , (ii) integrate from zi to  zT (where wt  =  0), (iii) 
in tegrate upward from zT to  zi , and (iv) integrate from 
zT to  the  receiver depth  zi . This leads to  the  following 
equations for tu rn ing  rays:

i-1

i
k=j

Wk -  Wk+1 +  2 Wi +  

pgk pgi

Wk -  Wk-1

p g k - 1
(26)

l-1
t  =

1
to +  —

gkk=j

+
k=l

dr

dp

1

gk-1

log

loge

ck+1 (1 +  Wk )

ck (1 +  Wk+1 )_

ck-1 (1 +  Wk) 

ck (1 +  Wk-1)_

2 1 +  Wi 
+ — loge ---------

gi pci

(27)

l-1
Wk -  Wk+1

p 2 gk Wk Wk+1 gi p 2 wi k=j

+
'ST'' Wk -  Wk - 1

p 2 gk-1 Wk Wk-1 '
(28)
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F ig u re  2: Ray-tracing example. Left panel shows down­
ward-refracting sound-speed profile. Right panel shows 
ray paths for direct ray and all reflected rays with up to 
two bo ttom  reflections (ten paths).

dt_

3 c b

i - i  1

E 1
k = j9k

+E

Wk+i W k  

c k+1 c k

1

k=i 9 k - 1

W k - 1 

c k - 1

+

W k

c k

2 wi

ci9i

(29)

Similar equations can be derived for an initially upward 
propagating ray th a t  tu rn s  in a negative sound-speed gra­
dient.

An example of th e  above ray-tracing algorithm  is 
given in Fig. 2 for a challenging case involving a strongly 
downward refracting sound-speed profile w ith variable 
gradients and a near-surface mixed (near iso-speed) layer. 
The water depth  is 85 m and the  source and receiver 
depths are 30 and 75 m, respectively. Figure 2 shows 
all rays w ith  up to  th ree surface and two bo ttom  re­
flections for a range of 800 m. The direct and bottom - 
reflected rays are tu rn ing  rays which require the  bisection 
search to  determ ine th e  corresponding ray param eters. 
All o ther rays were determ ined using N ew ton’s m ethod. 
The surface- and surface-bottom  reflected rays are close 
to  tu rn ing  near th e  ocean surface (i.e., go through  small 
grazing angles); th is represents a difficult ray-param eter 
search and required 8 iterations of N ew ton’s m ethod to 
converge to  a range tolerance of 0.01 m. All other rays 
required only two iterations for convergence.

3. AEL INVERSE THEORY

T he AEL inverse problem form ulated here consists 
of estim ating 3-D position variables (x, y ,  z )  for the  N r 
receivers and N s sources of an AEL survey, based on lin­
earized inversion of travel-tim e d a ta  as represented by 
the  acoustic ray theory  developed in Section 2. The data  
can include direct an d /o r  surface- and bottom-reflected 
arrivals, and can consist of absolute travel tim es (known 
source transm ission instants), relative travel tim es (un­
known source instants), or absolute travel tim es with an 
unknown offset. In the  case of relative travel times, N s 
source instan ts are included as explicit unknown param -

eters in the  inversion. For travel-tim e d a ta  w ith an un ­
known transm ission offset, th e  offset is included as a sin­
gle param eter. Finally, the  bias for the  measured sound- 
speed profile is also considered as an unknown param eter 
in the  inversion.

The acoustic arrival tim es t  m easured in an AEL 
survey can be w ritten  in general vector form as

t  =  t(m )  +  n. (30)

In Eq. (30), the  model m  represents the  unknown pa ­
ram eters (discussed above). The forward m apping t(m ) 
represents com putation of acoustic arrival tim es along 
ray paths between sources and receivers. Finally, n  rep ­
resents additive errors (noise), w ith  the  assum ption th a t  
the  error n i on da tum  t i is due to  an independent, Gauss- 
ian-distributed  random  process w ith zero m ean and s tan ­
dard  deviation a i .

The inverse problem of estim ating m  from t  is func­
tionally nonlinear. However, a local linearization can be 
obtained by expanding t ( m ) = t ( m 0+ im )  in a Taylor se­
ries to  first order about an a rb itrary  starting  model mo 
leading to  [3]

J m  =  t  — t ( m 0) + J  m 0 =  d, (31)

where J  is the  Jacobian m atrix  of partia l derivatives 
J j  =  3 t i ( m 0 ) / d m j  (derived in Section 2), and d  repre­
sents modified d a ta  defined in term s of known quantities. 
Equation (31) represents a linear inverse problem which 
can be solved for m  as described below. Since nonlin­
ear term s are neglected, the  linearized inversion m ust be 
repeated iteratively until convergence.

Treating bo th  source and receiver locations as u n ­
known leads to  an ill-conditioned inverse problem which 
cannot be solved using s tandard  least-squares m ethods 
even in cases where the  num ber of d a ta  exceed the  num ­
ber of unknowns. This ill-conditioning indicates th a t  the 
d a ta  alone do not constrain the  solution, and additional 
independent inform ation (prior information) is required. 
T he m ethod of regularization [14-16] provides a powerful 
approach to  include prior inform ation in linear inversion. 
This is accomplished by minimizing an objective function 
^  th a t  combines the  d a ta  misfit w ith regularizing term s 
th a t  impose the  prior information. Two forms of prior 
inform ation are typically available in AEL problems, and 
can be imposed by including two regularization terms:

^  =  |G  (J  m —d ) |2 + ^ i |H i  (m —m  1 |2+M2 IH 2 (m —m  2 ) |2
(32)

In (32), the  first te rm  represents the  (linearized) x 2 data  
misfit, and the  remaining term s represent regularizations 
(described below) with trade-off param eters (Lagrange 
multipliers) ^ 1 and ^ 2 determ ining the  relative im por­
tance of the  th ree term s in the  minimization.

The first regularization term  in Eq. (32) applies prior 
param eter estim ates for th e  source and receiver positions 
as available from knowledge of the  deployment procedure. 
Hence, m  1 consists of th e  prior estim ates for these pa ­
ram eters and the  regularization m atrix  H 1 is of the  form

H i = d iag [1 /6 j ], (33)
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where ôj represents th e  estim ated s tandard  deviation of 
an assumed G aussian uncertain ty  distribution for the  j t h  
prior param eter estim ate m j .

The second regularization term  is optional, and can 
be used (when applicable) to  apply the  prior expectation 
th a t  the  array shape is expected to  be a sm ooth function 
of position (x, y, z). This can be applied using m 2 =  0 
and H 2 consisting of a Toeplitz m atrix  w ith non-zero 
entries on j t h  row of th e  form

H 2j 0 , . . . .
- 1 Uj+ 2

(uj  + 1 Uj )2 (uj+ 2 Uj+1)(u j  + 1 Uj )2

1

(uj+ 2 -  Uj+1)(u j+1 -  Uj ) ’
(34)

applied to  the  x, y, and z receiver position variables, 
where Uj represents the  distance along the  array to  the 
j t h  receiver. Each row of H 2 in Eq. (34) represents a 
discrete approxim ation to  the  second derivative operator 
d 2/d u 2. Hence, |H 2 m |2 provides a measure of the  to ­
ta l curvature of the  array shape, and th e  regularization 
produces the  simplest array shape th a t  is consistent with 
the  acoustic d a ta  and prior position estimates.

The regularized solution is obtained by setting d ^ /  
d m  =  0, leading to  [3]

m m  1 +  J T g t  g j  +  M1 h T  H 1 +  M2 h T  H 2]
1

J T G TG d -  J iÎm ] . (35)

X (m)

F ig u re  3: AEL inversion tes t case. The tru e  position 
of the  31-element receiver array is indicated by th e  do t­
ted  line, the  prior estim ate by the  dashed line, and the 
inversion result by the  solid line. True positions, prior 
estim ates, and inversion results for the  source locations 
are indicated by the  squares, triangles and crosses, re­
spectively.

Uj

0

AEL inversion consists of an iterative application of the 
regularized solution, typically in itia ted  from a starting  
model coinciding w ith the  prior param eter estimates. 
Convergence is based on achieving a statistically  appro­
pria te  fit to  the  acoustic d a ta  (i.e., th a t  th e  x 2 misfit 
achieves its expected value of (x 2) =  N  for N  data) and 
obtaining a stable solution such th a t  the  change in re­
ceiver locations between iterations is small com pared to  
the  desired accuracy. A practical aspect of implementing 
the  inversion involves assigning values to  the  trade-off pa ­
ram eters, and yU,2, which control the  balance between 
the  d a ta  misfit and the  various forms of prior inform a­
tion; a straightforw ard procedure is described in [3].

An im portan t component of any inverse problem is 
estim ating the  uncertain ty  of the  solution. For linear 
problems with G aussian-distributed d a ta  errors and prior 
estim ates, the  posterior model covariance m atrix  is given 
by

C  =  [JT G T G J  +  H T H 1]- 1 , (36)

with th e  i th  diagonal element of C  representing the  vari­
ance (standard  deviation squared) of the  i th  recovered 
param eter. For nonlinear inverse problems solved via i t ­
erated  linearized inversion, the  covariance m atrix  can be 
approxim ated by Eq. (36) with J  evaluated a t the  final 
model. The validity of th is approach depends on the  de­
gree of nonlinearity of the  inverse problem, bu t has been 
found to  be a good approxim ation for AEL inversion [12] 
(considered further in the  following section). Because of 
the  com putational efficiency of the  linearized uncertainty

estim ates, they provide a convenient and effective way to  
characterize AEL inversion results, and can be applied in 
designing optim al AEL surveys (described in Section 5).

An example of th e  regularized AEL inversion is given 
in Fig. 3 for a synthetic tes t case based on a 600-m array 
of 31 equally spaced receivers (20-m separation) a t ap ­
proxim ately 75-m depth  in a water-column w ith sound- 
speed profile shown in Fig. 2. As shown in Fig. 3, the 
starting  model and prior estim ate for the  receiver loca­
tions consist of a s traight array along th e  x axis from 
-3 0 0  to  300 m (dashed line), while th e  tru e  array shape 
(dotted line) is curved and displaced by approxim ately 
75 m in x and 50 m in y. The prior estim ate for all 
receiver depths is 75 m, while the  true  depths include 
Gaussian-distributed random  perturbations of 5-m stan ­
dard  deviation about this depth. The prior estim ates for 
9 source locations (triangles) are arranged symmetrically 
about the  prior array estim ate, with a 30-m source depth. 
The true  source positions (squares) include random  per­
tu rbations w ith s tandard  deviations of 10 m in x and y 
and 3 m in z, corresponding to  the  assumed uncertainties 
of th e  prior estim ates for these param eters (representa­
tive of measurem ents m ade a t sea). Simulated AEL d a ta  
(absolute travel times) were com puted for d irect-path  ar­
rivals and Gaussian errors of s tandard  deviation 0.5 ms 
were added to  produce the  m easured d a ta  set. AEL in­
version was carried out for the  sm oothest array shape 
th a t  fit the  d a ta  and prior estim ates to  w ithin their un ­
certainties. The inversion result for the  receiver locations
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Figure 4: Localization errors for the AEL test case. 
Panels (a)-(d) show absolute errors (filled circles) and 
linearized uncertainty estimates (solid lines) for sensor 
locations in x, y, z, and R, respectively.

(solid line) is in close agreement with the true receiver lo­
cations, although a small translation (to positive x) and 
rotation (counter-clockwise) is evident. The inversion re­
sults for the source locations (crosses) are generally sig­
nificantly closer to the true source positions than to the 
prior estimates, particularly in cases where the true and 
prior locations differ substantially (e.g., at x =  ±300 m 
and y =  +300 m).

The AEL localization errors are examined in Fig. 4, 
which compares the absolute errors in x, y, z, and R  =  
[x2 +  y2 +  z2]1/2 to the corresponding linearized poste­
rior uncertainty estimates. The linearized uncertainties 
represent the actual errors reasonably well, although the 
results of the translation (in x) and rotation (in y) lead 
to some systematic differences (translations and rotations 
are specific to the particular data and prior errors, while 
the linearized estimates quantify expected uncertainties).

The effect of knowledge of source transmission in­
stants is investigated in Fig. 5, in terms of linearized 
receiver position uncertainties in x, y, z, and R for the 
above AEL test case. The uncertainties for relative travel­
time data (Fig. 5a), are slightly larger for all coordinates 
than the other two data types (Fig. 5b and c), with a total 
degradation of approximately 1 m in R. Figure 5(b) and 
(c) show virtually identical results for data consisting of 
absolute travel-times and absolute travel-times with an 
unknown offset.

The use of reflected arrivals in AEL is examined 
in Fig. 6, which compares the mean linearized receiver- 
location uncertainty in x, y, z, and R  for five data sets 
consisting of different combinations of ray paths includ-

<uoc

- E
<D
Oc

c
'rt
(Ûoc

Receiver

Figure 5: Linearized receiver-location uncertainties for 
relative travel-time data, absolute travel-time data, and 
absolute travel-time data with unknown offset shown in 
(a)-(c), respectively (uncertainties x, y, z, and R  indi­
cated by solid, dashed, dotted, and heavy solid lines).

ing: direct (d), surface-reflected (s), bottom-reflected (b), 
direct plus surface-reflected plus bottom-reflected (dsb), 
and all ray paths with up to one bottom reflection (all, 
six paths). The effect of water-depth uncertainty can 
be incorporated in the inversion by increasing the uncer­
tainties of the bottom-reflected arrival-time data by an 
amount commensurate with propagation over the uncer­
tainty in depth, as determined via ray-tracing. Water- 
depth uncertainties of 1, 3, and 8 m are considered in 
Fig. 6(a)-(c), respectively. Figure 6(a) shows th a t the 
receiver-location uncertainties in x and y are virtually 
unchanged by including reflected arrivals, as these fol­
low identical radial paths and provide little new infor­
mation regarding horizontal positioning. Compared to 
the direct-path inversion, the uncertainty in z is slightly 
improved for the surface-reflected path as it arrives at 
a steeper angle, but slightly degraded for the bottom- 
reflected path due the uncertainty in water depth. The 
localization uncertainty in z is significantly reduced by 
including multiple arrivals in the AEL inversion. Fig­
ure 6(a)-(c) show th a t the z localization uncertainties in­
crease slightly with water-depth uncertainty for multiple- 
path inversions th a t include the bottom-reflected path, 
and increase significantly for the bottom-reflected only 
inversion. Figure 6(c) shows th a t inverting bottom-re­
flected data with large water-depth uncertainty leads to 
slightly degraded receiver-localization in x and y.

c
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This is because position errors common to  all receivers 
are equivalent to  a simple rigid-body translation  an d /o r 
ro ta tion  of the  receiver array. However, relative position 
errors introduce inter-receiver tim ing and phase errors 
which cannot be corrected by translation  or ro tation, and 
degrade applications such as matched-field localization.

To obtain  relative error estim ates from the  M onte 
Carlo analysis, the  effects of translations and rotations of 
the  individual inversion estim ates (relative to  the  true  po­
sitions) are removed prior to  computing th e  error s ta tis ­
tics. O ptim al estim ates of these transform ations are de­
rived as follows. Let (x j , y j ) represent N r receiver-posi- 
tion  estim ates and (X j, Yj) represent the  true  positions. 
The optimal translation  (Sx, Sy) is found be minimizing 
the  12 error norm  (i.e., least-squares minimization)

Nr

E \  {[x j +  Sx — X j]2 +  [yj +  Sy — Yj]2} . (37)
j= 1

Setting OEi/OSx  =  OEi/OSy  =  0 yields

Nr

Sx =  —  ] T [X j  — xj] =  X  — : (38)
j = 1

F ig u r e  6: Mean linearized receiver-location uncerta in ­
ties in x, y, z, and R  (solid, dashed, dotted, and heavy 
solid lines, respectively) for different combinations of ray 
paths (defined in tex t). Panels (a)-(c) show results for 
w ater-depth uncertainties of 1, 3 and 8 m, respectively.

4. MONTE CARLO UNCERTAINTY  
ANALYSIS

The previous section described linearized uncertainty 
estim ates which can be evaluated efficiently from th e  reg­
ularized solution. M onte Carlo appraisal provides an al­
te rna te  approach which provides fully nonlinear uncer­
ta in ty  estim ates, bu t is much more com putationally in­
tensive. In the  M onte Carlo approach, the  source and 
receiver positions determ ined via inversion of the  m ea­
sured d a ta  are assumed to  define th e  true  positions for a 
synthetic inverse problem, and acoustic arrival-time da ta  
are computed. A series of independent inversions are 
then  carried out, each with different random  errors ap ­
plied to  the  com puted d a ta  and to  the  prior position es­
tim ates and s tarting  model (these errors are drawn from 
Gaussian distributions with s tandard  deviations equiva­
lent to  the  corresponding estim ated uncertainties of the 
d a ta  and priors). S tandard  deviations about the  true  
sensor positions can then  be com puted from the  ensem­
ble of inversion results.

An advantage of the  Monte Carlo approach is th a t  it 
can be used to  estim ate localization errors in bo th  an ab ­
solute sense (relative to  the  fixed geographic coordinate 
system) and in a relative sense (in array-based coordi­
nates), while linearized uncertainty estim ates represent 
absolute errors. For some array processing applications, 
relative position errors provide a more relevant measure.

Nr

Sy =  — yj] =  y  — y, (39)

where the  over-bar represents the  m ean over all receivers. 
Equations (38) and (39) indicate th a t  the  optim al tran s ­
lation consists of a shift in x and y equal to  the  difference 
between the  m ean tru e  and estim ated positions. To de­
term ine the  optim al ro ta tion  (after translation), define 
ro ta ted  estim ated positions as

xj =  rj cos(0j +  * ) ,  yj =  rj sin(0j +  * )  (40)

where r j =  [x2 +  y |] 1/2, 0j =  ta n - 1 (yj / x j ), and *  is 
the  ro tation  angle to  be determined. The 12 error norm 
between th e  ro ta ted  and reference positions is defined

Nr

E 2 =  2̂ {[rj cos(^j +  * ) — X j]2 +  [rjsin(0j +  * )  — Yj]2} .
j=1

(41)
Setting d E 2/ d *  =  0 for a minimum leads (after some 
algebra) to

1 Y]j r j (Yj cos 0j — X j sin 9Î) . .

*  =  *“  E j  — Yj m  . j ) . (42)

As an example of the  M onte Carlo appraisal, Fig. 7 
compares bo th  absolute and relative nonlinear receiver 
uncertain ty  estim ates to  the  linearized uncertainty esti­
m ates derived in Section 3 for th e  AEL example consid­
ered previously. The regularized inversion and linearized 
uncertain ty  estim ates required about 1-2 s com putation 
tim e on a 2 GHz desktop com puter running IDL (Inter­
active D a ta  Language). The M onte Carlo uncertainties 
are based on 500 independent (randomized) inversions

d s
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F ig u re  7: Receiver-location uncertain ty  estim ates (un­
certainties in x, y, z,  and R  indicated by solid, dotted, 
dashed, and heavy solid lines, respectively). Panel (a) 
shows th e  linearized uncertainty estim ates (standard  de­
viations), panels (b) and (c) show the  absolute and rela­
tive uncertainties estim ated by M onte Carlo appraisal.

which required about 15 m inutes com putation time. Fig­
ure 7(a) and (b) show th a t  the  linearized uncertainties 
and the  M onte Carlo absolute uncertainties are in good 
agreement. Figure 7(c) shows th a t  removing the  effects 
of translation  and ro tation  results in relative uncerta in ­
ties th a t  are substantially  smaller in x, y, and R  (not 
z). Finally, Fig. 8 shows th a t  the  relative errors from 
the  A EL inversion (i.e., corrected for optim al translation  
and rotation) and the  M onte Carlo relative uncertainty 
estim ates are in excellent agreement.

5. OPTIM AL AEL SURVEY DESIG N

This section considers the  problem of determining 
optim al AEL source configurations, i.e., the  source con­
figuration th a t  produces the  most accurate inversion for 
sensor positions. To th is end, an AEL error measure is 
defined and the  optim al survey configuration determ ined 
by minimizing th is error w ith respect to  the  source po­
sitions [12]. Since this represents a difficult optimization 
problem which m ust be solved numerically, the  AEL er­
ror m ust be com putationally efficient, and hence is based 
on the  linearized uncertainty estim ates described in Sec­
tion  3.

Let £x , £y, and represent the  s tandard  deviations 
of the  x, y, and z receiver-position coordinates as esti­
m ated  by th e  square root of th e  diagonal elements of the  
linearized posterior covariance m atrix  given by Eq. (36).

to
cc

œ
cc

Receiver

F ig u re  8: Relative receiver-location errors. Panels (a )-  
(c) show relative errors (filled circles) and M onte Carlo 
uncertain ty  estim ates (solid lines) for sensor locations in 
x, y, and R, respectively.

The AEL error measure is then  defined

E
N a

—  V  e2 +  e2 +  eN  Sy I S>.
i=1

1 / 2

(43)

This m easure represents the  root-m ean-square (RMS) 
3-D uncertainty of the  receiver positions. The source 
configuration th a t  minimizes E  provides the  receiver- 
position estim ates th a t  are the  most accurate on average.

Minimizing E  in Eq. (43) represents a strongly non­
linear optim ization problem th a t  can have a degenerate 
global minimum (due to  symmetries) and a large num ­
ber of local minima, and hence is not amenable to  lin­
earized optim ization methods. Here, an upda ted  version 
of adaptive simplex simulated annealing (ASSA) is ap ­
plied. ASSA represents an adaptive hybrid optim ization 
th a t  combines the  local downhill simplex (DHS) m ethod 
and very fast simulated annealing [17]. The version ap ­
plied here included several advances over th a t  described 
in [17]. F irst, th e  algorithm autom atically determines 
an appropriate s tarting  tem pera tu re  based on the  error 
functions associated w ith the  models of th e  (randomly- 
chose) s tarting  simplex. Second, m ultiple-contraction 
DHS steps are autom atically applied in cases where the 
algorithm has difficulty finding improved solutions. Third, 
the  adaptive component was modified to  m aintain a ratio 
of accepted to  a ttem pted  perturbations of between 0.2­
0.5 (the original version m aintained a ra tio  of greater 
th a n  0.2). The modified version of ASSA appears to  be 
significantly more efficient th a n  th e  original.

To illustrate optim al AEL source configurations, con­
sider first the  configuration of 9 sources shown in Fig. 3: 
the  expected RMS receiver error for this case is E  =  6.4 m

11 - Vol. 34 No. 4 (2006) Canadian Acoustics / Acoustique canadienne
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F igu re  9: (a) O ptim al configuration for 7 sources 
(crosses) to  localize the  receiver array (solid line). (b) 
Linearized s tandard  deviation estim ates for the  optimal 
configuration (x, y, z, and R  indicated by solid, dotted, 
dashed, and heavy solid lines, respectively)

(note th a t  th is applies for the  prior s tra ight-array  esti­
m ate, since th e  true  array shape is not known a t the  sur­
vey design stage). This error can be reduced significantly 
by using an optim al configuration for the  AEL sources. 
In fact, the  optim al configuration of ju s t 7 sources (shown 
in Fig. 9), constrained within -4 0 0  <  x, y <  400 m, leads 
to  RMS error E  =  6.0 m. The numerical optim ization 
required approxim ately 15 m inutes com putation time.

T he ability to  com pute optim al source configurations 
allows a variety of aspects of AEL survey design to  be 
studied in an objective and meaningful m anner. For in­
stance, to  examine the  dependence of receiver localiza­
tion  error on the  num ber of sources included in the  AEL 
survey, it is only possible to  separate the  dependence 
on the  num ber of sources from source-configuration ef­
fects by employing optim al source configurations. An 
example of such a study  based on the  th e  previously- 
described AEL tes t case (direct-arrival data) is given in 
Fig. 10. This figure shows the  RMS receiver localiza­
tion  error as a function of the  num ber of AEL sources 
(in optim al configurations) for the  th ree types of d a ta  
(absolute travel-tim es, relative travel-times, and absolute 
travel-tim es with unknown offset). The RMS localization 
uncertainties for d a ta  consisting of absolute travel-times 
w ith an unknown offset are virtually identical to  those for 
absolute travel-times when more th a n  three AEL sources
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F igu re  10: RMS receiver-location uncertain ty  versus 
num ber of sources for relative travel-tim e d a ta  (solid cir­
cles), absolute travel-tim e d a ta  (open circles), and ab ­
solute travel-tim e d a ta  w ith  unknown offset (triangles, 
generally obscured by open circles). D a ta  consist of di­
rect arrival-times.

are employed (for three sources, the  difference is 0.3 m). 
This indicates th a t  little localization inform ation is lost 
in solving for the  unknown offset tim e. RMS uncertain ­
ties are always larger for relative travel-tim e d a ta  th a n  for 
absolute travel-times, although th e  difference decreases 
w ith increasing num ber of sources (from about 2.3 m 
for three sources to  ~ 0 .5  m for 20 sources). Figure 10 
shows th a t  the  advantages of using absolute travel-tim e 
d a ta  from synchronized surveys are relatively minor, and 
can be offset using relative travel tim es and an increased 
num ber of sources. For instance, Fig. 10 shows th a t  us­
ing ten  sources and relative travel-tim e d a ta  produces an 
RMS uncertain ty  equivalent to  seven sources with abso­
lute travel-tim e data.

The difference between localization errors for rela­
tive and absolute travel-tim e d a ta  can be also reduced
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F igu re  11: Same as Fig. 10, except d a ta  consist of direct 
and surface-reflected arrival-times.
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by including reflected arrivals, since this provides addi­
tional data to constrain the same set of unknown source 
transmission instants. Figure 11 shows the RMS local­
ization uncertainty for relative and absolute travel-time 
data including both direct and surface-reflected arrivals. 
This figure indicates th a t differences between the results 
for absolute and relative travel times are approximately 
half those in Fig. 10 for direct arrivals.

6. SUMMARY AND DISCUSSION

This paper presented the theory and implementation 
of a complete approach to AEL based on regularized in­
version of the acoustic ray-tracing equations, which ac­
counts for uncertainties in the data, source locations, 
sound speeds, and water depth. Posterior uncertain­
ties in the recovered receiver locations are estimated ef­
ficiently from the linearized model covariance matrix, 
or from a fully nonlinear Monte Carlo appraisal at in­
creased computational effort. The Monte Carlo analysis 
can also be applied to compute relative receiver-location 
uncertainties, which can be more relevant for some array- 
processing applications. The overall AEL error is quan­
tified in terms of the RMS linearized receiver-location 
uncertainty, and optimal source configurations can be 
designed by minimizing this error measure over source 
positions via numerical optimization.

The ray-tracer developed here for AEL applications 
uses Newton’s method to efficiently determine specific 
eigenrays to high precision without shooting a large num­
ber of rays to bracket the receiver. Surface and bot­
tom reflections are included in this formulation using the 
method of images. Turning rays can also be included 
using a search based on rays th a t tu rn  at sound-speed 
layer boundaries. The efficiency of the ray tracer and of 
the resulting AEL inversion algorithm allows computa­
tionally intensive analysis such as the Monte Carlo error 
estimation and nonlinear optimization for optimal source 
configurations.

The AEL algorithms developed here can be used to 
investigate factors affecting AEL accuracy and guide in 
designing AEL surveys. Several illustrations were given, 
including examining the relative advantages of synchro­
nized versus non-synchronized AEL surveys and of in­
cluding multi-path arrivals in AEL inversion. It is found 
th a t synchronized AEL surveys provide only a minor im­
provement over non-synchronized surveys, which can be 
made up by using more sources in an optimal configura­
tion or by including reflected arrivals. AEL results based 
on absolute travel-time data with an unknown offset are 
virtually identical to absolute travel-time results. Includ­
ing multiple-reflected arrivals can significantly improve 
receiver-depth estimation (if water depth is well known), 
but provides little improvement in horizontal localization 
as the rays follow identical radial paths.
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The SLARMTM developed in response to increased 
emphasis on hearing conservation and comfort in 
the community and workplace incorporates 
ACOustAlert™ and ACOustAlarmTM technology. 
Making the SLARMTM a powerful and versatile 
sound monitoring/alarm system.

Typical Applications Include:
Community

♦Amphitheaters
♦  Outdoor Events
♦  Nightclubs/Discos
♦  Churches
♦  Classrooms

Industrial
♦  Machine/Plant Noise
♦  Fault Detection
♦  Marshalling Yards
♦  Construction Sites
♦  Product Testing

2604 Read Ave., Belmont, CA

www. acopacif ic.co m

FEATURES
V Wired and Wireless (opt)
V USB, Serial, and LAN(opt) Connectivity
V Remote Display s and Programming
V SPL, Leq, Thresholds, Alert and Alarm
V Filters (A,C,Z), Thresholds, Calibration
V Multiple Profiles (opt)
V 100 dB Display Range:
V 20-120 dBSPL and 40-140 dBSPL
V Real-time Clock/Calendar
V Internal Storage: 10+days @1/sec
V Remote Storage of 1/8 second events
V 7052S Type 1.5TM Titanium Measurement Mic

94002 Tel: 650-595-8588 FAX: 650-591-2891

acopac @acopacific.com

Pacific ACOusticsBegins With ACOTM


