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a b s t r a c t

Coded excitation methods offer the potential for improving the SNR without increasing the peak 
transmitted power and without sacrificing resolution. Our study examines the potential application of coded 
waveforms, specifically FM chirps, in harmonic imaging. Such a system, in which nonlinear echoes from 
tissue are used to form the image, requires the extraction and compression of the second harmonic portion 
of the echo signal. Our objective is to obtain the second harmonic using just one transmission, thereby 
avoiding problems of frame rate reduction and movement artifacts associated with multiple transmission 
schemes. With the help of an efficient method for predicting the transient nonlinear field from a focused 
transducer, design issues such as waveform and bandwidth selection, as well as filters for second harmonic 
extraction and compression are examined. Simulations reveal the presence of axial sidelobes in the 
compressed echo waveform as the bandwidth of the transmitted chirp is increased. These sidelobes, 
resulting from the overlap of the fundamental and third harmonic bands with the second harmonic, cannot 
be removed using conventional Fourier filtering. Alternative filtering techniques which utilize the 
separation of the harmonic bands of a backscattered chirp in the joint time-frequency domain are suggested.

s o m m a i r e

Les méthodes d'excitation codée ont le potentiel d’améliorer le ratio signal-bruit sans augmenter la 
puissance maximale transmise et sans sacrifier la résolution. Notre étude examine l'application potentielle 
de formes d'onde codées, plus spécifiquement de compression d’impulsions FM pour imagerie 
harmonique. Dans un tel système, les échos non-linéaires provenant du tissu sont utilisés afin de former 
l’image, ce qui requiert l ’extraction et la compression de la deuxième portion harmonique du signal 
d’écho. Notre objectif est d’obtenir le deuxième harmonique en utilisant seulement une transmission, 
évitant ainsi des problèmes de réduction du temps d’image et d’artefacts de mouvement associés avec de 
multiples schémas de transmission. En utilisant une méthode efficace de prédiction du champs non- 
linéaire transitoire provenant d’un transducteur focalisé, des problèmes de conception tels que la sélection 
de forme d’onde et de la largeur de bande, ainsi que de filtres pour l’extraction et la compression du 
deuxième harmonique sont examinés. Les simulations révèlent la présence de lobes latéraux axiaux dans 
la forme d’onde compressée au fur et a mesure que la largeur de bande de la compression d’impulsion 
transmise est augmentée. Ces lobes latéraux, dus au chevauchement de la bande harmonique 
fondamentale et de la troisième bande avec la deuxième bande harmonique ne peuvent pas être enlevés en 
utilisant le filtrage conventionnel de Fourier. En tant qu’alternative, des techniques de filtrage utilisant la 
séparation de bandes harmoniques de compressions d’impulsions rétrodiffusés dans le domaine commun 
de temps-fréquence sont suggérées.

1. i n t r o d u c t i o n

Coded excitation methods have been used in ultrasound 
imaging to improve the signal-to-noise ratio (SNR) and to 
maintain a high axial resolution at greater distances without 
increasing the peak transmitted power. As recently reviewed 
by Cobbold (see Sec. 8.4 in [1]), these methods were 
initially developed in the radar research field in the 1950s. 
Their application to medical ultrasound started in the 1970s 
when they were first used to improve the performance of

flow estimation [2] and tissue imaging [3][4]. In terms of 
their performance in ultrasound systems, coded excitation 
methods can achieve SNR gains in the range of 15-20 dB 
[5]. This improvement is comparatively more modest than 
the ones achievable in radar systems, where SNR gains on 
the order of several thousands are often possible.

The development of coded excitation schemes was 
originally motivated by Woodward’s theoretical studies on 
the range ambiguity problem in radar systems [6]. In 
particular, it was postulated that a long-duration transmit

35 - Vol. 35 No. 2 (2007) Canadian Acoustics / Acoustique canadienne

mailto:cobbold@ecf.utoronto.ca


(a)

Figure 1. Types of coded excitation schemes applicable to 
ultrasound imaging. (a) Binary encoding (a single-cycle 

sinusoidal transmitted pulse has been assumed). (b) Linear 
frequency-modulated (FM) chirp.

waveform could be used to increase the total transmitted 
energy while maintaining the same peak power without any 
loss in spatial resolution. Even though coded signals are 
generally longer duration than non-coded ones, the potential 
loss in spatial resolution can be avoided by using a 
compression filter that matches the pulse echoes with the 
transmitted signal’s time-reversed conjugate. Note that the 
resulting signal obtained from the cross-correlator is often 
known as the compressed waveform.

In the radar literature, a number of schemes have been 
proposed for coded excitation (see Ch. 6 & 8 in [7]). 
However, the applicability of many of these coding schemes 
in medical ultrasound is limited by the effects caused by the 
high attenuation of tissue and tissue motion. Nevertheless, 
two particular coding schemes -  namely, binary codes and 
frequency-modulated (FM) chirps (see Figure 1) -  are 
important for achieving significant SNR improvements in 
ultrasound [8]. In their comparison of these two schemes, 
Misaridis and Jensen [9] [10] argued that binary codes 
appear to be suboptimal because the sharp transitions in 
between binary states are very high frequency contents that 
tend to be truncated by the limited transducer bandwidth and 
the effects of frequency-dependent attenuation in tissues. 
Based on this argument, it seems to be more appropriate to 
focus on the FM-chirp coding method.

Although the use of coded excitation in ultrasound 
imaging is well established, there have been few studies that 
considered the potential use of these methods in tissue 
harmonic imaging where the nonlinear ultrasound echoes 
returned from tissues are used to form images. As such, the

Figure 2. Generic diagram for a compression filter in which 
the output is the cross-correlation of the received signals and 

the transmitted pulse’s time-reversed conjugate.

purpose of this paper is to use simulation means to examine 
the primary issues related to the use of linear FM chirps for 
improving the SNR performance in tissue harmonic 
imaging. The simulations are based on the use of FM chirp 
coding in a single-firing harmonic imaging scheme, and 
these results are compared with the ones obtained from a 
two-pulse harmonic imaging scheme known as pulse 
inversion [11]. To facilitate presentation of the simulations, 
we shall start with brief reviews of FM chirp coding and 
harmonic imaging methods. Details of the simulations 
scheme used in our studies will subsequently be described.

2. THEORY

2.1. Principles of FM Chirp Methods

Background Considerations

Consider the pulse compression filter shown in 
Figure 2, where the pulse-echo impulse response of a given 
echogenic medium is denoted by h(t). If the transducer is 
excited by a waveform et(t) and if the filtering effect of the 
transducer is ignored, then the received waveform er(t) is 
given by the following convolution:

er( t ) = et( t ) * h ( t ) = p t (t - x ) h ( x) dx-
J - r n

(1)

Also, the compressed waveform eo(t) (i.e. the output of the 
cross-correlator) can be shown to be equal to:

eo (t ) = I er (t + u )et (-u  ) du
•—œ

= I I I et (t + u — x)et (—u)
•—œ I *—œ

du h( x) dx
(2)

= Ree (t) * h(t)

where Ree(t) is the autocorrelation of et(t). From (2), it can 
be seen that the compressed waveform is the convolution 
between the transmitted signal’s autocorrelation function 
and the medium’s impulse response.

General Principles

In general, a unit-amplitude FM chirp pulse whose 
instantaneous frequency varies linearly with time can be 
expressed as:

2
et (t ) = rect (t / T  )cos - + cot T ,for t < —, 

2
(3)
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Figure 3. A non-tapered linear FM chirp of 10 ^s duration, 
5MHz center frequency, and 2.5MHz signal bandwidth. (a) 
Frequency spectrum as calculated from (4). (b) Envelope of 

the compressed signal as calculated from (3) without the cosine 
term (the total compressed signal duration is 20 p,s).

where T  is the pulse duration, œo is the center angular 
frequency, and k is a chirp rate parameter that controls the 
pulse bandwidth. Note that the instantaneous frequency of 
(3) is given by œ(t) = dp/dt =œo+kt, where 9  is the argument 
of the cosine function.

To illustrate the use of FM chirps in a coded excitation 
system, we consider a basic imaging scenario where the 
echogenic medium only contains a single point target. For 
such a scenario, the medium’s response is simply equal to 
an impulse [A(t)=ô(t)], and correspondingly the compressed 
waveform defined in (2 ) is simply equal to the transmitted 
signal’s autocorrelation function. Hence, if the FM chirp of 
(3) is fired into this single-target medium and if the filtering 
effect of the transducer is ignored, the resulting compressed 
waveform at the receiver output can be shown to be given 
by (see Sec. 6.2 in [7]):

(t) ^ r e c t (t/ 2 T )s i n k ( T - | t | ) / 2 ] ^ t ). (4)
V n kt

From the rect() term in the above expression, it can be seen 
that the compressed waveform actually extends over twice 
the initial chirp duration, i.e., from -T  to +T. Also, its 
envelope generally follows a pseudo-sinc shape as 
described by the sin[kt(T-|t|)/2]/kt term. Aside from the 
time-domain expression, it is also worth considering the 
compressed waveform’s spectrum (which is simply the FM 
chirp’s spectrum in this case). From Fourier analysis, this 
spectrum can be shown to be given by (see Sec. 6.3 in [7]):

E° ( ®) = ^ k e i( M-MO )2/2 k k  k  X  k + F *( X 2 )], (5)

where X, = [kT/2+(w-ro0)]/(knf, X2 = [kT/2-(w-w0)]/(kn)^, 
and F  (X) is the complex conjugate of a Fresnel integral.

The above expressions can be illustrated through the 
example shown in Figure 3, where a 10 |us FM chirp with a 
center frequency of 5 MHz and a bandwidth of 2.5 MHz is 
assumed. Note that such a waveform has time-bandwidth 
product that is 25 times larger than a non-chirped pulse 
echo scheme. As can be seen from the figures, the 
compressed waveform contains range sidelobes (sometimes 
referred to as self-noise) with amplitudes comparable to the 
main lobe. As discussed by Kowatsch and Stocker [12], the 
sidelobes are a result of the rect() time window inherent in 
the transmitted chirp pulse and are directly related to the 
Fresnel ripples seen in the frequency spectrum. In the 
presence of multiple scattering targets, these sidelobes will 
lead to difficulties in detecting a weakly scattering target 
because its main lobe may be masked out by the range 
sidelobes of a strongly scattering target located nearby.

Pulse Shaping Considerations

To account for the sidelobe problem when using FM 
chirps, much effort has been devoted towards devising 
schemes for reducing the range sidelobe level to well below 
-50 dB. For instance, time-domain shaping of the transmit 
pulse can be used to smooth out the sharp edges associated 
with the chirp pulse’s rectangular window. One useful way

(_____10 iis______>

5 MHz \

(a) Spectrum \

3 4 5 6 7
Frequency, MHz

o

GÛ 
- o

<1)■§ -10 

Q.
E 
<

-20
-5 -4 -3 -2 -1 0 1 2 3 4 5

Time, |ns
Figure 4. Effect of cosine (Tukey) amplitude tapering on the 
compressed envelope. Other signal parameters are the same 
as those in Figure 3. (a) Transmitted waveform with a cosine 

taper over the first and last 2.25 p,s and its spectrum.
(b) Envelope of the compressed signal.

of shaping a chirp pulse is to apply a cosine taper (i.e., a 
Tukey window) to the leading and trailing parts of the 
waveform. As can be seen in Figure 4, the tapered chirp
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Figure 5. Simulated waveforms and profiles from transmission of a Gaussian pulse ofpo=500 kPa, f c=2 MHz, and 60% -6 dB 
fractional bandwidth, from a 1 cm radius focused transducer (F= 6 cm) into a tissue-like medium (a0 = 0.04 Np/cm/MHz, p = 4.75, 

co=1546 m/s). (a) Comparison of the transmitted waveform to the waveform at the focal point, demonstrating distortion due to 
nonlinearity. (b) Comparison of the spectrum of the transmitted waveform to the waveform at the focal point, demonstrating 

generation of new harmonic bands. (c) Normal velocity profile of the 2 MHz component of the waveform as it propagates into the 
medium, note the presence of lateral sidelobes. (d) Normal velocity profile of the 4 MHz component of the waveform as it 

propagates into the medium. Note that the lateral sidelobes do not extend very far in the lateral direction.

pulse has a much smoother spectrum, which in turn leads to 
significant reduction in the range sidelobes. It is worth 
noting that the bandpass nature o f the transducer’s transfer 
function may also be exploited to achieve similar spectral 
smoothing effects. In particular, if  the transducer bandwidth 
is narrower than that o f a non-tapered chirp pulse, then it is 
equivalent to applying a frequency-domain window to the 
chirp pulse’s spectrum. This effect has been examined in a 
few studies [10][13], which showed that the transfer 
function o f the transducer can cause a substantial reduction 
in the range sidelobes. Despite their advantages, however, it 
is important to note out that pulse shaping and spectral 
smoothing would concomitantly lead to a SNR reduction of 
a few dB and a slight loss o f axial resolution due to 
broadening o f the main lobe.

2.2. Principles of Harmonic Imaging

Background Considerations

As reviewed by Cobbold (see Sec. 8.6 in [1]), there are 
generally two approaches to harmonic imaging: one based 
on the use o f a contrast agent like microbubble, and the 
other based on the generation o f nonlinear waves in tissue. 
The basic rationale behind the first approach is that the 
nonlinear scattering properties o f ultrasound contrast agents

can generate signal harmonics in regions where the agents 
are located and in turn enhance the local signal contrast. As 
such, the imaging process associated with the use of 
contrast agents is often called contrast media harmonic 
imaging. On the other hand, the main principle behind the 
second approach is that tissue can too become a nonlinear 
scattering medium if  the incident pressure fields are 
sufficiently high and thereby give rise to harmonic echoes. 
This second form o f imaging, generally called tissue 
harmonic imaging, is the subject of discussion in this paper.

General Principles
To illustrate the field excitation principles behind tissue 

harmonic imaging, Figure 5 shows the fundamental and 
second-harmonic field profiles produced by transmitting a 
wideband Gaussian pulse from a focused disc transducer 
into a tissue-like medium. As seen in part (a) o f this figure, 
there is substantial distortion (in the form o f spiky wave 
peaks) in the incident waveform at the focal point. It turns 
out that these distortions are due to the signal harmonics 
being generated in the focal region (see (d) o f the figure). 
On a different note, it is worth pointing out that the second- 
harmonic field profile is significantly more focused than its 
fundamental counterpart. Such focusing improvement is 
well-recognized as the theoretical advantage o f producing 
images from harmonic echoes. However, a major limitation
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o f using harmonic echoes for imaging is that their signal 
strength is at least 10 dB weaker than the fundamental 
signals (see part (b) o f figure). To address this limitation, it 
is beneficial to develop a technique that can boost the SNR 
in harmonic imaging (especially when examining for 
deeper structures). As suggested in some studies 
[10][14][15][16], the use o f coded excitation may be a 
potential solution for such SNR improvement needs. This 
technique is the focus o f our simulation study, and it will 
simply be referred to as coded harmonic imaging from 
hereon.

2.3. Design Considerations in Coded 
Harmonic Imaging

Pulse Selection Issues

As pointed out by Misaridis and Jensen [10], FM 
chirps maintain their coded phase relationship in the 
harmonic domain -  i.e. the higher harmonics are also chirps 
and can be compressed using appropriately matched filters. 
Hence, when using FM chirps for coded harmonic imaging, 
compression filters like the ones for chirp-based coded 
excitation can be used to obtain the compressed harmonic 
waveform. In view o f this advantage, FM chirps appear to 
be logical candidates for use in coded harmonic imaging. 
On the other hand, the use o f binary codes in harmonic 
imaging appears to be more challenging because the phase 
coding relationship for fundamental signals does not carry 
over for harmonic echoes. This type o f code is not 
considered in this paper. Nevertheless, it is worth noting 
that there are some special forms o f binary codes that may 
be potentially useful for coded harmonic imaging [14].

Bandwidth Issues

The transmitted signal bandwidth is an important 
parameter in ultrasound B-mode imaging since bandwidth 
directly affects the axial resolution. The impact o f this 
signal parameter in conventional harmonic imaging is also 
well-known: if  the transmitted signal is wideband, then 
adjacent harmonics in the received signal may overlap in 
frequency. The potential occurrence o f this spectral leakage 
creates a problem since it makes difficult for a conventional 
highpass filter to distinguish the spectral harmonics from 
the fundamental. In particular, with spectral leakage, the 
highpass filter can suppress the leaking fundamental signal 
only if  some o f the desired harmonic echoes are removed 
concomitantly, or else some o f the fundamental signal will 
still remain. A well-known solution to such problem is to 
use a two-pulse transmission scheme known as “pulse 
inversion” (which transmits a pulse and its negated form in 
sequence) and then sum the two complementary pulse 
echoes to cancel out the fundamental signal while retaining 
the harmonic echoes. Nevertheless, because two firings are 
needed, this approach inherently leads to a reduction in 
frame rate. As well, as examined by Shen and Li [17], its 
efficacy is susceptible to spectral leakage problems when 
tissue motion is present.

In coded harmonic imaging, the problem o f spectral 
leakages is even more significant. The reason is because the 
compression filtering procedure used to recover the axial 
resolution is often matched to the transmit pulse shape, and 
thus the harmonic compression performance will be 
reduced if  there is a significant amount o f spectral leakage 
present in the received signal. In turn, the compressed 
harmonic signal (usually done for the second harmonic) 
may suffer in the form o f loss in axial resolution, contrast 
resolution, or SNR. The impact o f spectral leakage on the 
compressed harmonic signal will be examined in detail in 
our simulations.

3. SIMULATION METHOD 

3.1. General Overview

For all the simulations reported in this study, the 
pressure field was generated by a single focused circular 
transducer with a radius o f 1 cm and a focal length o f 6 cm. 
The medium was characterized by the following parameters 
of a tissue mimicking material similar to liver tissue: 
acoustic attenuation a = aof  (with ao = 0.04Np/cm/MHz), 
nonlinearity parameter ft = 4.7, sound propagation speed 
co = 1546m/s, and density p  = 1000kg/m3. Ultrasound 
propagation in this medium was simulated by using a 
second-order operator splitting approach that uses a 
fractional step-marching scheme, whereby the effects o f 
diffraction, attenuation, and nonlinearity can be computed 
independently over incremental steps [18]. To calculate the 
effects o f diffraction, we took advantage o f the cylindrical 
symmetry o f the problem by making use of the Hankel 
transform [19] rather than the less efficient angular 
spectrum approach. The return echo from a single point 
scatterer is assumed to propagate linearly to the transducer, 
where the integrated received signal is processed by the 
receiver filter, which includes compression filtering for 
coded waveforms, and finally the display processing. Our 
simulation results assumed a homogenous medium and a 
sufficiently wideband transducer so as not to affect either 
the transmitted or received signals.

3.2. Transmitted Signal

In order to determine the effect o f bandwidth on the 
desired second harmonic signal, linear FM chirps with -6dB 
fractional bandwidths ranging from 10-80% were simulated 
and the waveforms at the focal plane were recorded. In 
these simulations, a constant chirp duration o f 20 jo.s and a 
center frequency o f 2 MHz were used. Also, for 
comparison, the results from a conventional (non-coded) 
Gaussian pulse with the same fractional bandwidth and 
peak pressure were also simulated.

As pointed out earlier, the pulse shaping window has a 
significant influence on the sidelobe level and affects the 
mainlobe width. Hence, as part o f the study, we 
investigated the effects o f the following three pulse shaping 
windows:
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BW Focal Point Spectrum, z = 60.3 mm Compressed Focal Point Waveform
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Figure 6. The left column shows the spectrum of the waveform at the focal point for transmitted chirps with fractional bandwidths 
of 20%, 40% and 60% and their comparison to the second harmonic as predicted by the second order distortion (SOD) model. The 

right column shows the corresponding compressed waveforms obtained from the SOD compression filter. The -20 dB mainlobe 
width and the peak side lobe levels (PSL) are marked. Note the increasing sidelobes associated with spectral leakage as the

bandwidth is increased.

1. Gaussian (with % = 3, where % is the reciprocal of 
the standard deviation);

2. Tapered Cosine (with Æ=0.65, corresponding to 
M atlab’s tukeywin.c);

3. Rectangular (i.e. no tapering).

3.3. Receiver Processing

In the absence o f any coding, the receiver typically 
includes filtering to remove components outside the second 
harmonic band, followed by envelope detection and display 
on a log scale. Another way o f distinguishing the second 
harmonic band in non-coded imaging is to use the pulse- 
inversion firing scheme that involves two firings along each 
path (as we noted earlier). On the other hand, for FM 
chirps, the receiver processing must include compression 
filtering in order to recover the axial resolution o f the 
received echoes. In a single firing system, the coded 
received signal is often passed directly to the compression

filter, although bandpass filters can be used to remove some 
unwanted components before compression. Alternatively, if 
pulse inversion is used during coded harmonic data 
acquisition, then the field generated by both the original 
pulse and its negated form must first be calculated, the 
corresponding echoes summed together, and then passed 
directly to the compression filter.

3.4. Compression Filter Model

In the design o f chirp-coded harmonic systems, Kim et 
al. [16] made use o f a square law model (also known as a 
second order distortion model) o f the propagation process 
to design a compression filter. Ignoring higher harmonics, 
this model assumes that the received signal from nonlinear 
propagation can be approximated as r(t) = a1s(t) + a2s2(t), 
where a 1 and a2 are constants that characterize the nonlinear 
propagation process and s(t) is the transmitted signal. This 
seems to be a suitable signal model since the second
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harmonic is the strongest among the nonlinear harmonics; 
hence, it was used to predict the second harmonic portion of 
the received signal on which the compression filter is based. 
In fact, the impulse response of our compression filter for 
the second harmonic was defined as the time-reversed 
conjugate of s2(t). In the discussion given below we refer to 
such a compression filter as an SOD compression filter.

3.5. Performance Evaluation

For the purpose of analyzing the behavior of a coded 
waveform under nonlinear propagation conditions, the 
waveforms obtained using the aforementioned step-wise 
nonlinear simulator are analyzed mainly at two locations. 
The first is the radiation pattern at the focal plane where we 
can analyze the spectrum of the on-axis waveform and even 
apply the receiver processing directly to the waveform. The 
second location is at the transducer where the compressed 
harmonic signal can be analyzed after compression 
filtering.

Whether we apply the receiver processing to the focal 
plane signal or the received signal from a scatterer, the 
system performance can be quantitatively assessed by using 
several criteria corresponding to axial resolution, contrast 
resolution, and gain in SNR [9] [10]. These criteria are 
generally used to analyze the compressed harmonic signal 
that is ready for display -  i.e., the waveform has been 
processed, envelope detected and changed to a dB scale 
reflecting the dynamic range of the system. In our study, the 
-20 dB mainlobe width (MLW) of the processed time 
domain signal is used to assess axial resolution. The Peak 
Sidelobe Level (PSL) and Integrated Sidelobe Level (ISL) 
are also used to assess contrast resolution. In addition, the 
gain in SNR is assessed by finding the ratio between the 
peak of a compressed harmonic signal and that of a 
processed non-coded signal obtained from a Gaussian pulse 
with equal peak pressure and bandwidth.

4. RESULTS 

4.1. Spectral Overlap and Effects on 
Compression

The left column in Figure 6 shows the spectrum of the 
received signal at the focal point for three transmitted 
Gaussian-windowed FM chirps of increasing fractional 
bandwidths. These focal point spectra indicate that as the 
bandwidth is increased, the fundamental and third harmonic 
bands overlap with the second harmonic band, resulting in 
periodic fluctuations in the spectrum as well as deviations 
from the assumed second order distortion model (dashed 
lines). Note that the nature of the overlap and its effects on 
spectrum shape are different than those seen with non
coded pulses. In particular, the spectral overlap is not in the 
form of random dephasing; instead, it is in the form of 
periodic fluctuations that result from the nonlinear phase of 
the transmitted FM chirp and its harmonics. The effects of 
this spectral overlap on the compressed harmonic signal can

Frdction.il Bandwidth [%|

10 20 30 40 50 60 70 80

0G

?

40

20

-20
-40

-60

-80

-100

-120

-140

-160

—*

. *- -  ‘ ‘ 1
\  ^

^ ¥■ ^  / — PSL --

T + 1
N

,

t  C | _ --
’ x  / — -  ML W idth --

i . . - ft _
" " —■ - ■- —■

6 g

4 2. z
3 5

0

Figure 7. Effect o f  bandw idth on coded harm onic com pression  
for a G aussian transm itted signal. As fractional bandw idth of 

the transm itted signal is increased, the peak sidelobe level (PSL) 
and integrated sidelobe levels (ISL ) o f  the com pressed w aveform  
are increased, w hile the m ainlobe w idth , w hich is an indicator o f  

axial resolution, is decreased.

be seen in the right column of Figure 6. As can be seen, 
significant sidelobe levels are produced as bandwidth is 
increased, even though there is improvement in the 
mainlobe width (and in turn the axial resolution). These 
sidelobes reach levels of greater than -40 dB for 40% and 
-20 dB for the 60% transmitted bandwidth.

For the Gaussian FM chirp, the performance criteria 
based on the compressed harmonic waveforms have been 
tabulated and are shown in Figure 7. Note that, for chirps 
with fractional bandwidths less than 40%, the mainlobe 
width appears to increase significantly and hence the axial 
resolution may be too low for imaging purpose. However, 
when the fractional bandwidth is greater than 40%, there is 
a substantial increase in the peak sidelobe levels (PSL) and 
their relative energy to the mainlobe (ISL). This pattern of 
increasing sidelobes at greater bandwidths also applies to 
the non-Gaussian chirp signals; in fact, depending on the 
tapering, some waveforms exhibit large sidelobes even at 
lower bandwidths. To suppress these high sidelobe levels, it 
is necessary to carry out some form of pre-processing (e.g., 
filtering) or use a more advanced compression filter.

4.2. Use of Pulse Inversion Prior to 
Compression

To confirm the role of spectral overlap in creating the 
high sidelobe levels, the above analysis was repeated on 
received signals whose fundamental and odd harmonics 
were suppressed with the pulse inversion method. The 
corresponding focal point spectra before compression are 
shown in Figure 8. As can be seen, the spectrum of the 
second harmonic in this case looks much closer to the 
second order distortion model since the fundamental and 
third harmonic bands are both suppressed via pulse 
inversion. Interestingly, there are still the some differences 
in the two spectra near 6 MHz, and these differences are 
likely due to the spectral overlap between the second and
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freq [MHz]

freq [MHz)

Figure 8. Effect of pulse inversion on the spectrum of the focal 
point waveform (bandwidth=60%). (a) Spectrum of the 

waveform at the focal point. (b) Spectrum obtained from 
addition of the focal waveform from transmission of a positive 

LFM  and that from transmission of the inverted LFM  
waveform. The SOD model also plotted for reference.
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Figure 9. Effect o f bandwidth on coded harmonic compression 
when using pulse inversion (PI). PSL-peak sidelobe level; 

ISL-integrated sidelobe level.

fourth harmonics. As will be shown shortly though, they do 
not appear to have much impact on the compression results.

As seen in Figure 9, the effect of pulse inversion (i.e., 
spectral overlap reduction) on the compression performance 
is evident by noting the reduced sidelobe levels in the 
compressed harmonic waveform. In particular, for 
fractional bandwidths greater than 40%, PSL levels have 
decreased by 30-40 dB while the ISL levels have reduced 
by as much as 80 dB. Nevertheless, it is important to bear in 
mind that such performance improvements come at a cost 
of reduced frame rate (two firings are required) and 
potential spectral leakage due to tissue motion [17].
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4.3. Use of Conventional Filtering Prior to 
Compression

Perhaps a straightforward way of suppressing the 
sidelobes in the compressed harmonic signal is to use 
bandpass filtering before compression to retain only the 
second harmonic components. However, in doing so, we 
are faced with the same problem which plagues the single
firing harmonic imaging approach -  that is, the desired 
harmonic band and the leaking bands are not completely 
separable in the frequency domain. In fact, this problem is 
more severe in the case of coded harmonic imaging due to 
compression filtering.

To demonstrate the pitfalls of conventional bandpass 
filtering, the focal-point received signal corresponding to a 
60%-bandwidth chirp excitation was filtered using several 
ideal bandpass filters prior to compression. Figure 10a 
shows two examples of such bandpass filters on top of the 
received spectrum. The 3.25-5.25 MHz filter has reduced 
one of the compression sidelobes significantly -  as seen in 
Figure 10b -  yet the sidelobe levels are still within the 45 
dB dynamic range. If we narrow the bandpass filter to 3.5
5.0 MHz, the secondary sidelobes are reduced further, but 
the mainlobe starts to widen along with its own increasing 
sidelobes. This inherent tradeoff between sidelobe level and 
mainlobe width is indeed the primary limitation of using 
conventional bandpass filtering to reduce the sidelobes in 
the compressed harmonic signal.

A potential alternative approach is to make use of 
second order Volterra filters. This method was examined 
and applied by Phukpattaranont and Ebbini [20] for 
separating the quadratic component generated by contrast 
agents for use in imaging.

freq [MHz]
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Figure 11. Effect of waveform tapering and bandwidth on 
coded harmonic compression. The graph compares the 

integrated sidelobe levels (ISL) and mainlobe width after 
compression for three types of pulse shaping: 
Rectangular (R), Tapered Cosine (TC), and 

Gaussian tapering (G).

(mainlobe width). Note that, in a practical situation, the 
finite operating bandwidth of the transducer would further 
complicate the choice.

Even though we have chosen to apply the tapering 
directly to the transmitted waveform, it is not the only way 
to reduce sidelobe levels. Alternatively, the tapering can be 
applied to the compression filter’s impulse response so that 
as much energy as possible can be physically transmitted. 
As studied carefully by Misaridis and Jensen [9][10], such a 
filter can be considered as a mismatched filter.

4.5. Gain in SNR Due to Coding and 
Compression

As discussed previously, the purpose of coding is to 
increase the signal to noise ratio without changing the peak 
transmitted power and thereby improving the penetration 
range. To demonstrate this theoretical advantage, Figure 12 
shows the gain in SNR by comparing the result from

transmission of a non-coded

4.4. Pulse Shaping 
and Effects on 
Compression 
Results

In the previous few 
sections, the presented results 
were obtained using 
Gaussian-windowed FM 
chirps. To generalize these 
findings, the analysis was 
repeated using other types of 
pulse shaping windows. The 
corresponding results are 
summarized in Figure 11, 
which shows a comparison 
on the mainlobe width and 
sidelobe levels of the 
compressed harmonic
waveform obtained from transmission of three different 
types of tapered FM chirps. As can be seen, if a rectangular 
window (i.e., no tapering) is used on the transmitted signal, 
then high-energy sidelobes are present in the compressed 
harmonic signal even at small bandwidths. As transmitted 
signal tapering increases (from none to tapered cosine to 
Gaussian), these sidelobes become less prominent. On the 
other hand, an opposite trend is observed for the mainlobe 
width: no tapering actually gives narrower mainlobe widths 
and hence yields better axial resolution. After all, the choice 
of tapering is influenced by tradeoff issues between axial 
resolution (sidelobe levels) and temporal resolution

Time, (.is
Figure 12. Gain in SNR as a result of coding. Even though 
axial sidelobes are present, compression has recovered the 

axial resolution and increased the SNR. Note the peak of the 
mainlobe of the compressed LFM is more than 30 dB greater 

than the non-coded pulse peak.

pulse to that of a 20 ^s coded 
FM chirp of equal fractional 
bandwidth (60%). Note that, 
for the non-coded pulse, 
pulse inversion was used to 
extract the second harmonic 
while suppressing the odd 
harmonics. As for the FM 
chirp, a compression filter 
based on the second order 
distortion model was applied 
to the received waveforms to 
obtain the compressed 
harmonic signal, and the 
procedure was repeated for 
received signal obtained with 
pulse inversion.

By comparing the 
mainlobe peaks from Figure 
12, it can be seen that the FM 

chirp’s compressed harmonic signal has an SNR gain of 
approximately 30 dB as compared to the non-coded pulse’s 
received signal. Additionally, the figure confirms the 
benefits of suppressing the spectral overlap in the received 
spectra prior to compression filtering, even though the 
suppression was achieved using pulse inversion. Another 
observation evident in this figure is that the compressed 
harmonic signal of the FM chirp actually has a mainlobe 
width approximately the same as that of the non-coded 
pulse. This result demonstrates the ability of chirp-based 
coded excitation methods in obtaining compressed 
harmonic waveforms with high axial resolutions.
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Figure 13. Example of a focal point waveform (a harmonic chirp signal) and the resulting waveform after convolution with the 
impulse response of the compression filter. The smaller circled waveforms to the right and left of the compressed waveform are due 
to the leaking fundamental and third harmonic portions of the chirp. Note that they disappear (lower part) after the fundamental 

and third harmonic portions of the focal waveform have been removed using the pulse inversion technique.

4.6. Compression Filtering Issues

The simulation results presented throughout this 
section have shown that, as the bandwidth o f the 
transmitted FM chirp is increased to improve resolution, the 
spectral leakage between harmonics would give rise to high 
sidelobe levels in the compressed harmonic signal. In this 
section, we shall further discuss the origin and nature of 
these sidelobes and examine the potential o f removing them 
without the need for pulse inversion by taking advantage of 
a chirp’s time-frequency domain properties.

We begin by recalling that, as the transmitted FM chirp 
propagates into the medium, the waveform gradually gets 
distorted as the focus is approached, thereby leading to the 
generation of new harmonic frequencies. Nevertheless, the 
harmonics would still retain their coded properties (i.e., the 
nonlinear phase relationship which defines a chirp). Hence, 
the return echo at a specific point may be approximated by 
a higher-order signal model r(t) = a1s(i)+a2s1(i)+a3si(i)+ .... 
The upper-left plot o f Figure 13 shows a single-point pulse 
echo simulated using a third-order signal approximation 
and a 20 p.s Gaussian FM chirp with 60% bandwidth. To 
process this coded received signal, it should be noted that a 
compression filter matched to s2(t) is the most reasonable 
choice because the exact parameters o f the medium (i.e. 
nonlinearity, attenuation, etc.) are unknown in practical 
situations. In Figure 13, such a compression filter is used to 
compress the focal waveform, and the results are shown in

the upper-right plot. Note that, in addition to the desired 
compressed second harmonic (i.e. the mainlobe), two 
smaller waveforms are present at its left and right (i.e. the 
sidelobes). On a dB scale, the magnitudes o f these smaller 
waveforms are actually comparable to the main compressed 
waveform. In contrast, when pulse inversion is used to 
remove the fundamental and the third harmonic in the 
simulated waveform (bottom-left plot o f Figure 13), the 
undesired sidelobes would disappear from the compressed 
harmonic signal (bottom-right plot). This result confirms 
that the sidelobes are caused by the leaking fundamental 
and third harmonic bands.

To remove the leaking bands in a single-firing system, 
we may be able to take advantage o f properties o f chirps in 
the time-frequency space. For instance, Figure 14 shows a 
typical received harmonic chirp and its corresponding 
waveform after compression in time, frequency, and time- 
frequency domains. As can be seen, the harmonics of the 
received chirp (left column o f Figure 14) are completely 
overlapping in the time domain; there is also significant 
overlap between the harmonic bands in the frequency 
domain. However, in the time-frequency space o f the 
spectrogram, the different harmonic chirps of the signal are 
clearly separable and have distinct time-frequency slopes. 
Although this example is merely based on the assumption 
that scatterers are well separated in space, it nevertheless 
illustrated the time-frequency variation characteristics of 
chirp echoes. In practice, it would be worthwhile to 
examine in more detail the time-frequency properties o f
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Figure 14. Typical harmonic chirp before and after compression, shown in the time, frequency, and time-frequency domains. Left 
column shows a typical harmonic chirp signal at the focus of the transducer; in the spectrogram, the different harmonic 
components of the chirp are clearly distinguishable. Right column shows the compressed waveform using a second order 

compression filter. While the second harmonic chirp is compressed, the leaking fundamental and third harmonic chirps result in
presence of uncompressed chirps to its left and right.

chirp echoes returned from multiple scatterers that 
collectively give rise to signal speckling features.

More insights on the time-frequency nature of coded 
harmonic echoes can actually be drawn by examining the 
properties of the compression filter which is based on a 
second order distortion model. Such a filter tends to cancel 
out the coded phases in the second harmonic component of 
the received signal, thereby compressing this harmonic in 
the time domain as seen in the right hand column of 
Figure 14 (here again, the assumption of well-separated 
scatterers should be noted). In the time-frequency domain, 
the compressed second harmonic would correspond to a 
component with infinite time-frequency slope (i.e. parallel 
to the frequency axis). On the other hand, the spectral 
leakage components originating from the fundamental and 
the third harmonic would emerge in the spectrogram as 
chirps to the left and right of the desired second harmonic. 
In fact, as evident in Figure 14, leakages from the 
fundamental would give rise to a longer chirp to the right of 
the compressed second harmonic, while leakages from the

third harmonic would give rise to the smaller and shorter 
chirp to the left. Interestingly, since these leakage chirps are 
separated and have different chirp rates, it may be possible 
to suppress them via the use of time-frequency analysis 
techniques.

5. SUMMARY AND CONCLUSIONS

Tissue harmonic imaging takes advantage of the 
nonlinear distortion of ultrasound waves in tissue and the 
associated generation of higher harmonics to obtain images 
with potentially improved clarity. However, since the 
generated higher harmonics are generally weaker than the 
fundamental signal, it may be useful to use techniques like 
coded excitation to increase SNR and improve signal 
penetration. Between the two useful types of codes in 
ultrasound, namely binary codes and FM chirps, FM signals 
are more readily applicable to tissue harmonic imaging as 
the harmonics still retain their coded phase relationship.
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In this paper, the potential o f linear FM chirps as codes 
in tissue harmonic imaging was examined. Specifically, we 
have studied the effects of bandwidth and pulse shaping on 
the compressed harmonic signals. The study was carried out 
through simulation means by using a step-wise nonlinear 
simulator that can compute the pressure field corresponding 
to the transmission o f FM chirps (fo=2 MHz, p o=500 kPa) 
from a 1cm-radius focused disc transducer into a homo
genous, tissue-mimicking material. The focal point signals 
were compressed using a filter that is matched to the square 
o f the transmitted signal. The compressed harmonic signals 
were then analyzed based on several criteria, including 
mainlobe width, sidelobe levels, and SNR gain relative to a 
non-coded pulse. Our simulations indicate that even though 
coding potentially increases the SNR, the compression 
process can result in creation o f high-magnitude sidelobes. 
Since these sidelobes increase with FM chirping bandwidth 
and can theoretically be eliminated using pulse inversion, it 
was concluded that they are attributed to spectral overlap of 
the adjacent harmonics. To reduce the sidelobe magnitudes, 
the leaking fundamental and third harmonic bands must be 
removed prior to computing the compressed harmonic 
signal. However, since these leaking frequency bands are 
not separable in the frequency domain, they cannot be 
removed effectively using conventional bandpass filtering. 
Alternatively, it may be possible to take advantage of the 
properties o f FM chirps in the joint time-frequency domain 
where the various harmonics o f a chirp are separable.
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